Читаем Отличная квантовая механика полностью

Линейные пространства состоят из элементов, называемых векторами. Векторы — это абстрактные математические объекты, но, как подсказывает название, их можно представлять себе в виде геометрических векторов. Как и обычные числа, их складывают друг с другом и вычитают один из другого с образованием новых векторов; их также можно умножать на числа. Однако векторы нельзя перемножать или делить друг на друга, как это делают с числами.

Одной из характерных черт линейной алгебры, используемой в квантовой механике, является применение так называемой нотации Дирака для векторов. При обозначении вектора, вместо того чтобы записать, к примеру, мы пишем |a⟩. Почему такая нотация оказывается удобной, станет ясно чуть позже.


Определение A.1.Линейным (векторным) пространством 𝕍 над полем[132] 𝔽 называется множество, в котором определены следующие операции:

1. Сложение: для любых двух векторов |a⟩, |b⟩ ∈ 𝕍 существует единственный вектор в 𝕍, который называется их суммой и обозначается |a⟩ + |b⟩.

2. Умножение на число («скаляр»): для любого вектора |a⟩ ∈ 𝕍 и любого числа λ ∈ 𝔽 существует единственный вектор в 𝕍, который называется их произведением и обозначается λ |a⟩ ≡ |a⟩ λ.

Эти операции подчиняются следующим аксиомам:

1. Коммутативность сложения: |a⟩ + |b⟩ = |b⟩ + |a⟩.

2. Ассоциативность сложения: (|a⟩ + |b⟩) + |c⟩ = |a⟩ + (|b⟩ + |с⟩).

3. Существование нуля: существует элемент 𝕍, называемый |zero⟩, такой, что для любого вектора |a⟩ выполняется |a⟩ + |zero⟩ = |a[133].

4. Существование противоположного элемента: для любого вектора |a⟩ существует другой вектор, обозначаемый —|a⟩, такой что |a⟩ + (—|a⟩) = |zero⟩.

5. Дистрибутивность векторных сумм: λ (|a⟩ + |b⟩) = λ |a⟩ + λ |b⟩.

6. Дистрибутивность скалярных сумм: (λ + μ) |a⟩ = λ |a⟩ + μ |a⟩.

7. Ассоциативность скалярного умножения: λ (μ |a⟩) = (λ μ) |a⟩.

8. Унитарность скалярного умножения: для любого вектора |a⟩ и числа 1 ∈ 𝔽 выполняется 1 ∙ |a⟩ = |a⟩.


Определение A.2.Вычитание векторов в линейном пространстве определяется следующим образом:

|a⟩ — |b⟩ ≡ |a⟩ + (— |b⟩).


Упражнение A.1. Какие из следующих пространств являются линейными (над полем комплексных чисел, если не оговорено иначе):

a) ℝ над ℝ? ℝ над ℂ? ℂ над ℝ? ℂ над ℂ?

b) Полиномиальных функций степени ≤ n? > n?

c) Всех функций, таких что 𝑓(1) = 0? 𝑓(1) = 1?

d) Всех периодических функций с периодом T?

e) N-мерных геометрических векторов над R?


Упражнение A.2. Докажите следующее:

a) в линейном пространстве существует только один нуль;

b) если |a⟩ + |x⟩ = |a⟩ для некоторого |a⟩ ∈ 𝕍, то |x⟩ = |zero⟩;

c) для любого вектора |a⟩ и числа 0 ∈ 𝔽 верно равенство 0 |a⟩ = |zero⟩;

d) —|a⟩ = (–1) |a⟩;

e) —|zero⟩ = |zero⟩;

f) для любого |a⟩ вектор —|a⟩ единственный;

g) — (—|a⟩) = |a⟩;

h) |a⟩ = |b⟩ тогда и только тогда, когда |a⟩ — |b⟩ = 0.

Подсказка: большинство этих утверждений можно доказать путем прибавления одного и того же числа к обеим частям уравнения.

A.2. Базис и размерность

Определение A.3. Говорят, что множество векторов |𝑣i⟩ является линейно независимым, если ни одна нетривиальная[134] линейная комбинация λ1|𝑣1⟩ + … + λN|𝑣N⟩ не равняется |zero⟩.


Упражнение A.3. Покажите, что множество векторов {|𝑣i⟩} не является линейно независимым тогда и только тогда, когда один из векторов |𝑣i⟩ может быть представлен в виде линейной комбинации других.


Упражнение A.4. Для линейных пространств геометрических векторов покажите следующее.

a) В пространстве векторов на плоскости (обозначаемой ℝ2) любые два вектора линейно независимы в том и только том случае, если они не параллельны. Любое множество из трех векторов линейно зависимо.

b) В пространстве векторов в трехмерном пространстве (обозначаемом ℝ3) любые три вектора, не лежащие в одной плоскости (не компланарные), образуют линейно независимое множество.

Подсказка: вспомните, что геометрический вектор можно определить его компонентами x, y и z.


Определение A.4. Подмножество {|𝑣i⟩} векторного пространства 𝕍 является для 𝕍 остовом (или остовным набором — spanning set), если любой вектор в 𝕍 можно выразить как линейную комбинацию векторов |𝑣i⟩. Множество всех линейных комбинаций элементов некоторого множества {|𝑣i⟩} называется натянутым на {|𝑣i⟩}.


Упражнение A.5. Для линейного пространства геометрических векторов на плоскости покажите, что любое множество, состоящее по меньшей мере из двух векторов, из которых по крайней мере два не параллельны друг другу, образует остов.


Определение A.5.Базисом 𝕍 называется любой линейно независимый остов. Разложением вектора по базису называется его выражение в виде линейной комбинации элементов базиса.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука