Читаем Отличная квантовая механика полностью

Упражнение A.18. Покажите, что при умножении вектора на фазовый множитель e, где ϕ — действительное число, его норма не меняется.


Определение A.12. Линейное пространство, в котором определено скалярное произведение, называется гильбертовым пространством (Hilbert space).

A.4. Ортонормальный базис

Определение A.13.Ортонормальным (ортонормированным) базисом {|𝑣i⟩} называется базис, элементы которого взаимно ортогональны и имеют норму, равную 1, т. е.

⟨𝑣i | 𝑣j⟩ = δij, (A.3)

где δij — символ Кронекера.


Упражнение A.19. Покажите, что любое ортонормальное множество из N векторов (где N = dim 𝕍) образует базис.


Упражнение A.20. Покажите, что если  суть разложения векторов |a⟩ и |b⟩ по ортонормальному базису, то их скалярное произведение можно записать в виде

Уравнение (A.4) может быть выражено в матричной форме при помощи правила «строка-на-столбец»:

Одной из областей применения приведенных выше правил вычисления скалярного произведения является обычная пространственная геометрия. Как мы узнали в упр. A.10, координаты геометрических векторов соответствуют их разложению по ортонормальному базису поэтому неудивительно, что их скалярные произведения задаются уравнением (A.4).

Предположим, мы вычисляем скалярное произведение одной и той же пары векторов по (A.5) в двух разных базисах. Тогда в правой стороне уравнения у нас будут стоять разные числа, и может показаться, что скалярное произведение тоже станет зависеть от выбранного базиса. Однако на самом деле это не так: согласно определению A.9, скалярное произведение определяется для пары векторов и не зависит от базиса.


Упражнение A.21. Покажите, что коэффициенты разложения

вектора |a⟩ по ортонормальному базису можно найти следующим образом:

ai = ⟨𝑣i | a⟩. (A.6)

Иными словами [см. (A.1)],


Упражнение A.22. Рассмотрим два вектора в двумерном гильбертовом пространстве: |ψ⟩ = 4 |𝑣1⟩ + 5 |𝑣2⟩ и |ϕ⟩ = –2 |𝑣1⟩ + 3i |𝑣2⟩, где {|𝑣1⟩, |𝑣2⟩} — ортонормальный базис.

a) Покажите, что множество

также является ортонормальным базисом.

b) Найдите матрицы векторов |ψ⟩ и |ϕ⟩ в обоих базисах.

c) Вычислите скалярное произведение этих векторов в обоих базисах, используя (A.5). Покажите, что они совпадают.


Упражнение A.23. Покажите, что если |a⟩ есть нормированный вектор, а {ai = ⟨𝑣i |a⟩} — его разложение в ортонормальном базисе {|𝑣i⟩}, то


Упражнение A.24. Предположим, что {|𝑤i⟩} есть некоторый базис в 𝕍. Покажите, что он может быть использован для нахождения ортонормального базиса {|𝑣i⟩} путем применения следующего уравнения последовательно к каждому из элементов базиса:

где 𝒩 — коэффициент нормирования. Это называется процедурой Грама — Шмидта.


Упражнение A.25*. Для нормированного вектора |ψ⟩ в N-мерном гильбертовом пространстве и любого натурального числа mN покажите, что возможно найти базис {|𝑣i⟩}, такой что


Упражнение A.26*. Докажите неравенство Коши — Буняковского (Cauchy — Schwarz inequality) для любых двух векторов |a⟩ и |b⟩:

|⟨a | b⟩| ≤ ║ |a⟩║ ×║ |b⟩║. (A.10)

Покажите, что это неравенство становится равенством в том и только том случае, когда векторы |a⟩ и |b⟩ коллинеарны (т. е. |a⟩ = λ |b⟩).

Подсказка: примите во внимание, что ║|a⟩ — λ |b⟩║2 ≥ 0 для любого комплексного числа λ.


Упражнение A.27. Докажите неравенство треугольника для любых двух векторов |a⟩ и |b⟩:

║ (|a⟩ + |b⟩) ║ ≤ ║|a⟩║ + ║|b⟩║. (А.11)

A.5. Сопряженное пространство

Скалярное произведение ⟨a | b⟩ можно вычислить как матричное произведение (A.5) строки и столбца. Если столбец напрямую соответствует вектору |b⟩, то строка получается из столбца, соответствующего вектору |a⟩, путем транспонирования и комплексного сопряжения. Договоримся связывать эту строку с вектором ⟨a|, который будем называть сопряженным (conjugate/adjoint) с |a⟩.


Определение A.14. Для гильбертова пространства 𝕍 определяют сопряженное пространство 𝕍, находящееся во взаимно однозначном соответствии с 𝕍, следующим образом: для каждого вектора |a⟩ ∈ 𝕍 существует один и только один сопряженный вектор ⟨a| ∈ 𝕍, обладающий свойством

сопр (λ |a⟩ + μ |b⟩) = λ*a| + μ*b|. (A.12)


Упражнение A.28. Покажите, что 𝕍 — линейное пространство.


Упражнение A.29. Покажите, что если {|𝑣i⟩} — базис в 𝕍, {⟨𝑣i|} — базис в 𝕍 и если вектор |a⟩ раскладывается по базису {|𝑣i⟩} как |a⟩ = ∑ ai |𝑣i⟩, то разложение сопряженного с ним вектора равно

Начинающие квантовые физики иногда забывают про правило сопряжения в уравнении (А.13). Чтобы потренироваться в его использовании, выполним следующее простое упражнение.


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука