Читаем Отличная квантовая механика полностью

Упражнение A.30. Найдите матричную форму вектора, сопряженного с |𝑣1⟩ + i |𝑣2⟩, в базисе {⟨𝑣1|, ⟨𝑣2|}.

«Прямые» и сопряженные векторы иногда называют кет- и бра-векторами соответственно. Эти названия, введенные П. Дираком вместе с символьными обозначениями ⟨| и |⟩, обосновываются тем фактом, что комбинация бра- и кет-векторов вида ⟨a | b⟩ — «скобка» (bracket) — дает скалярное произведение этих двух векторов.

Обратите внимание: 𝕍 и 𝕍 — разные линейные пространства. Бра-вектор и кет-вектор складывать друг с другом нельзя.

A.6. Линейные операторы

A.6.1. Операции с линейными операторами

Определение A.15.Линейный оператор Â на линейном пространстве 𝕍 — это отображение[136] линейного пространства 𝕍 на себя, такое, что для любых векторов |a⟩, |b⟩ и любого скаляра λ

Â(|a⟩ + |b⟩) = Â|a⟩ + Â|b⟩; (A.14a)

Â(λ|a⟩) = λÂ|a⟩. (A.14b)


Упражнение A.31. Определите, являются ли следующие отображения линейными операторами[137]:

f) Поворот на угол ϕ в линейном пространстве двумерных геометрических векторов (над ℝ).


Определение A.16. Для любых двух операторов их сумма есть оператор, который отображает векторы в соответствии с

Для любого оператора  и любого скаляра λ их произведение λ есть оператор, который отображает векторы в соответствии с

Â)|a⟩ ≡ λ(Â|a⟩). (A.16)


Упражнение A.32. Покажите, что множество всех линейных операторов над гильбертовым пространством размерности N само является линейным пространством, в котором сложение и умножение на скаляр задается уравнениями (A.15) и (A.16) соответственно.

a) Покажите, что операторы и λ являются линейными в смысле определения A.15.

b) Определите, чему равен нулевой элемент и противоположный элемент −Â заданного Â в пространстве линейных операторов.

c) § Покажите, что в пространстве линейных операторов выполняются все аксиомы, введенные в определении A.1.


Определение A.17. Оператор отображающий каждый вектор пространства 𝕍 на самого себя, называется единичным (тождественным) оператором.

Записывая произведение скаляра на единичный оператор, мы иногда опускаем символ — если, конечно, контекст не допускает двусмысленности. К примеру, вместо того, чтобы записать мы можем обойтись просто записью Â − λ.


Определение A.18. Для операторов их произведение есть оператор, отображающий каждый вектор |a⟩ на То есть, чтобы найти действие оператора на вектор, мы должны применить сначала к этому вектору, а затем Â к результату.


Упражнение A.33. Покажите, что произведение двух линейных операторов тоже является линейным оператором.

Порядок, в котором перемножаются два оператора, существенен, поскольку в общем случае Если же для каких-то операторов то говорят, что эти операторы коммутируют. Коммутационные, или перестановочные, соотношения между операторами играют важную роль в квантовой механике и будут подробно обсуждаться в разд. A.9.


Упражнение A.34. Покажите, что операторы поворота против часовой стрелки на угол π/2 и отражения относительно горизонтальной оси в линейном пространстве двумерных геометрических векторов не коммутируют.


Упражнение A.35. Покажите, что перемножение операторов обладает свойством ассоциативности, т. е. для любых трех операторов верно:

A.6.2. Матрицы

Может создаться впечатление, что для полного описания линейного оператора мы должны указать все его действия с каждым вектором. Однако на самом деле это не так. В действительности довольно лишь сообщить, как этот оператор отображает элементы некоторого базиса {|𝑣1⟩, …, |𝑣N⟩} в 𝕍, т. е. достаточно знать множество {Â|𝑣1⟩….,Â|𝑣N⟩}. Тогда для любого другого вектора |a⟩, который раскладывается в виде

|a⟩ = a1|𝑣1⟩ + … + aN |𝑣N⟩,

мы имеем, вследствие линейности,

Â|a⟩ = a1Â|𝑣1⟩ +…+ aNÂ|𝑣N⟩. (A.18)

Как много численных параметров нужно для того, чтобы полностью охарактеризовать линейный оператор? Каждый образ Â|𝑣j⟩ любого из элементов базиса можно разложить по тому же базису:

Для каждого j множество из N параметров A1j, …, ANj целиком описывает Â|𝑣j⟩. Соответственно, множество из N2 параметров Aij, где i и j изменяются от 1 до N, содержит полную информацию о линейном операторе.


Определение A.19.Матрицей оператора в базисе {|𝑣i⟩} называется квадратная таблица N × N, элементы которой задаются уравнением (A.19). Первый индекс в Aij есть номер строки, второй — номер столбца.

Предположим, к примеру, что вам требуется доказать равенство двух операторов Вы можете сделать это, показав идентичность матриц указанных операторов Aij и Bij в любом базисе. Поскольку матрица содержит полную информацию об операторе, этого достаточно. Конечно, базис следует выбирать продуманно, так чтобы матрицы Aij и Bij было как можно проще вычислить.


Упражнение A.36. Найдите матрицу оператора Покажите, что она не зависит от выбора базиса.


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука