Читаем Отличная квантовая механика полностью

Однако вероятность того, что Q лежит в некотором диапазоне значений — скажем, что ядро атома распадется в промежутке от 2 мс до 2,01 мс, — конечна. Поэтому мы можем дискретизировать непрерывную переменную: разделить диапазон значений, которые принимает Q, на равные интервалы шириной δQ. Затем становится возможным определить дискретную случайную переменную с возможными значениями соответствующими центральным точкам каждого интервала, и связанную с ней конечную вероятность того, что Q попадет в пределы этого интервала [рис. Б.4 a, b]. Как и для любого другого распределения вероятности, Разумеется, чем меньший интервал мы выберем, тем точнее опишем поведение непрерывной случайной переменной.

Можно ожидать, что значения вероятности, связанные с соседними интервалами, будут близки друг к другу, если интервалы мы выбрали достаточно маленькие. Для атомного распада, к примеру, мы можем записать pr [2,00 мс, 2,01 мс] ≈ pr [2,01 мс, 2,02 мс] ≈ 1/2 pr [2,00 мс, 2,02 мс]. Иными словами, для малых значений интервала величина не зависит от δQ. Следовательно, мы можем ввести понятие плотности вероятности, или непрерывного распределения вероятности[139]:

где i (Q) есть номер интервала, в пределах которого локализована величина Q, а предел берется по множеству дискретизированных распределений вероятности для Q. Эта плотность вероятности — основная характеристика непрерывных случайных величин.

Обратите также внимание, что поскольку дискретная вероятность — величина безразмерная, то размерность непрерывной плотности вероятности pr (Q) всегда обратна размерности соответствующей случайной переменной Q.


Упражнение Б.16. Для непрерывной случайной переменной с плотностью вероятности pr (Q) покажите, что:


Упражнение Б.17. Найдите плотность вероятности, матожидание и среднеквадратичное отклонение для времени распада радиоактивного ядра с периодом полураспада τ = 1 мс.

Плотность вероятности в природе часто имеет гауссово, или нормальное, распределение:

где b есть его ширина (рис. Б.5). Как правило, гауссово распределение управляет физическими величинами, находящимися под воздействием множественных небольших случайных эффектов, которые суммируются[140]. Например:

• положение частицы, участвующей в броуновском движении;

• время на часах, подверженных влиянию случайных флуктуаций температуры в комнате;

• компонент скорости газовой молекулы вдоль какой-то определенной оси.


Упражнение Б.18. Для гауссова распределения Gb (x — a) покажите следующее:

a) Распределение нормировано, т. е.

Замечу, что (Б.17) выполняется также для комплексного b, при условии что Re (b) > 0.

b) Среднее значение равно ⟨x⟩ = a.

c) Дисперсия равна ⟨Δx2⟩ = b2/2.

Подсказка: используйте

Приложение В. Введение в физику оптической поляризации

В.1. Поляризация света

Рассмотрим классическую плоскую электромагнитную волну, распространяющуюся вдоль (горизонтальной) оси z с угловой частотой ω и волновым числом k = ω/c, где c — скорость света. Эта электромагнитная волна является поперечной, так что вектор ее электрического поля лежит в плоскости x-y:

Здесь — единичные векторы вдоль осей x и y соответственно; AH и AV — действительные амплитуды x- и y-компонентов (которые мы будем называть горизонтальным и вертикальным), а ϕH и ϕV — их фазы.


Упражнение В.1§. Покажите, что уравнения (В.1) и (В.2) эквивалентны.

Интенсивность света в каждой поляризации пропорциональна

Полная интенсивность волны есть сумма двух ее компонентов:

Исследуем поведение вектора электрического поля в некоторой конкретной точке в пространстве, скажем, z = 0. Если два компонента поля различаются по фазе, будет менять направление в зависимости от времени, как показано на рис. В.1. Чтобы лучше разобраться в этом интересном явлении, попробуйте выполнить следующее упражнение.


Упражнение В.2. Постройте график зависимости горизонтального и вертикального компонентов вектора от времени в интервале 0 ≤ ωt ≤ 2π для следующих случаев:

a) AH = 1 В/м, AV = 0, ϕH = ϕV = 0;

b) AH = 5 В/м, AV = –3 В/м, ϕH = ϕV = 0;

c) AH = 5 В/м, AV = –3 В/м, ϕH = π/2, ϕV = 0;

d) AH = 5 В/м, AV = –3 В/м, ϕH = π/4, ϕV = —π/4;

e) AH = 5 В/м, AV = –3 В/м, ϕH = 0, ϕV = π/6.

В каждом из приведенных случаев постройте траекторию точки (Ex, Ey) для постоянной z как функцию времени.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука