Читаем Отличная квантовая механика полностью

Это свойство чрезвычайно важно, поскольку позволяет производить с дельта-функцией осмысленные вычисления, несмотря на ее сингулярную природу. Хотя дельта-функция не имеет численного значения во всей своей области определения, у интеграла произведения дельта-функции и любой другой функции, конечной в окрестности точки х=0, оно есть. Мы можем записать дельта-функцию вне интеграла, но должны всегда помнить, что в процессе преобразований она в итоге станет частью интеграла и тогда даст численное значение — к примеру, предсказание экспериментального результата.

Фактически уравнение (Г.3) можно рассматривать как строгое математическое определение дельта-функции. Пользуясь этим определением, мы можем получить другие ее базовые свойства.


Упражнение Г.2. Покажите, что:


Упражнение Г.3. Для ступенчатой функции Хевисайда

Подсказка: используйте уравнение (Г.3).


Упражнение Г.4. Покажите, что для любого c < 0 и d > 0

Г.2. Преобразование Фурье

Определение Г.1. Результатом преобразования Фурье функции 𝑓 (x) называется функция параметра k, определенная следующим образом[143]:

Это важное интегральное преобразование, используемое во всех областях физики. Рассмотрим, к примеру, оптическую волну, излучаемую множеством оптических источников разных частот. Волна, излучаемая конкретным источником частоты ω, имеет вид 𝑓(ω) e—iωt, где 𝑓(ω) — комплексная амплитуда этого источника. А суммарный сигнал от всех источников равен т. е. Фурье-образу функции 𝑓(ω) — частотного спектра набора источников. Плотность энергии спектра — функция |𝑓(ω)|2 — может быть измерена экспериментально при помощи оптического элемента с дисперсией, такого как призма.


Упражнение Г.5. Покажите, что, если существует, то:


Упражнение Г.6. Покажите, что Фурье-образ гауссовой функции тоже является гауссовой функцией:

Уравнение (Г.12) нам показывает, что масштабирование аргумента x некоторой функции приводит к обратному масштабированию аргумента k ее Фурье-образа. В частности (упр. Г.6), сигнал с гауссовым спектром ширины b есть гауссов импульс ширины 2/b, поэтому произведение двух ширин представляет собой константу. Это проявление частотно-временнóй неопределенности, которая действует в широком спектре волновых явлений в классической физике. Мало того — как мы видим в подразд. 3.3.2, это одна из возможных интерпретаций принципа неопределенности Гейзенберга в приложении к координате и импульсу.

А теперь рассмотрим два экстремальных случая преобразования Фурье гауссовых функций.


Упражнение Г.7. Покажите, что:

Если спектр содержит только нулевую частоту, то сигнал не зависит от времени, что неудивительно. Если же сигнал представляет собой мгновенную «вспышку», происходящую в момент времени t = 0, он будет содержать все частоты; его спектр — константа. Из этого наблюдения есть одно интересное следствие.


Упражнение Г.8. Покажите, что при a ≠ 0

Этот результат очень важен для многих вычислений с использованием преобразования Фурье. В его полезности мы скоро убедимся.


Упражнение Г.9. Считая a и b действительными и положительными, найдите Фурье-образы следующих функций:

Преобразование Фурье обратимо: для любого зависящего от времени импульса можно вычислить его частотный спектр, для которого данный импульс является Фурье-образом. Примечательно, что преобразование Фурье очень похоже на обратное ему преобразование. Намек на этот факт можно увидеть, к примеру, в (Г.13) и (Г.14). Сдвиг аргумента 𝑓(x) ведет к умножению на комплексную фазу. Если же мы домножаем 𝑓(x) на комплексную фазу, аргумент сдвигается.


Определение Г.2.Обратным преобразованием Фурье функции g (k) называется функция аргумента x, такая что

Отступление Г.1. Интерпретируем (Г.8)

Результат (Г.8), на первый взгляд, говорит нам, что интеграл равен нулю при k ≠ 0. Это противоречит традиционному интегральному исчислению, согласно которому интеграл конечной осциллирующей функции eikx должен расходиться при любом k. Чтобы разобраться с этим кажущимся противоречием, мы должны вспомнить, что (Г.19) верно только как обобщенная функция — т. е. как часть интеграла (Г.3). И в самом деле, если подставить (Г.19) в (Г.3), получится сходящийся интеграл.

Следовательно, хотя численного значения интеграла (Г.19) для любого конкретного k не существует, он имеет смысл как обобщенная функция k.


Упражнение Г.10. Покажите, что


Упражнение Г.11. Покажите, что


Упражнение Г.12§. Выведите аналоги правил, приведенных в упр. Г.5, для обратного преобразования Фурье.

Ответ: обозначив получим:

Решения

к учебному пособию

Глава Р1. Решения к упражнениям главы 1

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука