Читаем Отличная квантовая механика полностью

Если картина поляризации не является строго обыкновенной или необыкновенной, при распространении через двулучепреломляющий кристалл она изменится. Чтобы определить это изменение, волну раскладывают на необыкновенный и обыкновенный компоненты. Сдвиг фазы каждого компонента известен. Зная новые фазы обоих компонентов, мы можем объединить их, чтобы найти новую картину поляризации.


Упражнение В.7. Для каждого состояния поляризации из упр. В.2 постройте поляризационную характеристику, которую волна приобретет при прохождении сквозь: a) полуволновую пластинку; b) четвертьволновую пластинку с оптической осью, ориентированной вертикально.

Выполняя эти упражнения, вы, должно быть, заметили, что полуволновая пластинка «переворачивает» поляризационную картину вокруг вертикальной (или горизонтальной) оси, подобно зеркалу. Это неудивительно: сдвиг фазы вертикального компонента на π эквивалентен умножению AV на –1. Разумеется, такое отражающее свойство проявляется не только для вертикально ориентированной оптической оси, но для оси любой ориентации, что делает полуволновую пластинку универсальным инструментом поворота поляризации электромагнитного поля. Например, световая волна, линейно поляризованная под углом θ к горизонтали, после прохождения сквозь полуволновую пластинку с оптической осью, ориентированной под углом α к горизонтали, превратится в волну, линейно поляризованную под углом 2α — θ (рис. В.4).


Упражнение В.8§. Покажите, что полуволновая пластинка с оптической осью, ориентированной под углом 22,5° к горизонтали, преобразует горизонтальную поляризацию в поляризацию под 45° и обратно, а вертикальную поляризацию — в поляризацию под –45° и обратно.

Полный набор возможных трансформаций поляризационной картины не ограничивается поворотами. К примеру, полуволновая пластинка не может перевести линейную поляризацию в круговую/эллиптическую, и наоборот. Для решения этой задачи нам потребуется четвертьволновая пластинка.


Упражнение В.9. Покажите, что четвертьволновая пластинка с оптической осью, ориентированной вертикально или горизонтально, переводит круговую поляризацию в линейную под углом ±45°, и наоборот.


Упражнение В.10. Свет, линейно поляризованный под углом θ к горизонтали, проходит через четвертьволновую пластинку с вертикально ориентированной оптической осью. Найдите угол наклона большой полуоси к горизонтали и отношение малой и большой полуосей в выходной эллиптической поляризационной картине.


Упражнение В.11*. Предположим, у нас есть источник горизонтально поляризованного света. Покажите, что при помощи одной полуволновой и одной четвертьволновой пластинок можно получить свет с любой поляризационной характеристикой.

Подсказка: с этой задачей проще справиться, воспользовавшись геометрическими соображениями, в первую очередь результатом упр. В.5, а не формальной алгеброй.


Упражнение В.12*. Линейно поляризованный свет проходит сначала через полуволновую пластинку, потом через четвертьволновую под углом 45° к горизонтали, а затем через поляризующий светоделитель. Покажите, что интенсивность прошедшего света не зависит от угла ориентации полуволновой пластинки.

Приложение Г. Дельта-функция Дирака и преобразование Фурье

Г.1. Дельта-функция Дирака

Дельта-функцию можно представить себе как функцию Гаусса (Б.15) бесконечно малой ширины b (рис. Б.5):

Дельта-функция используется в математике и физике для описания распределений плотности бесконечно малых (сингулярных) объектов. Скажем, зависящая от координаты плотность одномерной частицы массой m, расположенной в точке x = a, может быть записана как mδ (x — a). Подобным образом плотность вероятности непрерывной «случайной переменной», которая принимает конкретное значение x = a, равна δ (x — a). В квантовой механике мы используем δ (x), к примеру, для записи волновой функции частицы, координата которой точно определена.

Понятие функции в математике относится к отображению, которое ставит число x в соответствие другому числу 𝑓(x). Следовательно, дельта-функцию нельзя считать функцией в традиционном смысле: она отображает все x ≠ 0 на 0, но x = 0 — на бесконечность, которая не является числом. Она принадлежит к классу так называемых обобщенных функций. Строгую математическую теорию обобщенных функций можно найти в большинстве учебников математической физики. Здесь мы поговорим только о тех свойствах дельта-функции, которые полезны для физиков.


Упражнение Г.1. Покажите, что для любой гладкой[142] ограниченной функции 𝑓(x)

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука