Читаем Отличная квантовая механика полностью

Решение для упражнения 1.24

a) Из уравнений (A.25) и (1.4) находим

b) Нам известно из табл. 1.1, что и

Следовательно, мы можем записать

c) Для полуволновой пластинки Δϕ = π, так что eiΔϕ = –1. Для четвертьволновой пластинки Δϕ = π/2, так что eiΔϕ = i. Подставив это в ÂΔϕ, получим выражения (1.5) (для полуволновой пластинки нам потребуется также применить тригонометрические тождества для синуса и косинуса двойного аргумента).


Решение для упражнения 1.25

a) Записав найдем:

b) Для четвертьволновой пластинки с оптической осью, ориентированной горизонтально, α = 0, так что (1.5b) принимает вид Применив это к состояниям диагональной и круговой поляризации, найдем:


Решение для упражнения 1.26. Исходя из (1.5a), находим, что матричное представление (в каноническом базисе) полуволновой пластинки с оптической осью, ориентированной вертикально, представляет собой оператор Эта волновая пластинка — все, что необходимо для реализации оператора

Аналогично [см. упр. 1.24 b)], полуволновой пластинки с оптической осью, выставленной под углом 135° к горизонтали, достаточно для реализации оператора

Если у нас есть последовательность оптических элементов, применяемых к фотону, то оператор для этой последовательности может быть найден путем перемножения операторов отдельных элементов (в обратном порядке, т. е. оператор, соответствующий первому оптическому элементу, в произведении должен стоять последним). Поскольку

оператор Паули может быть реализован (с точностью до общего фазового множителя) при помощи полуволновой пластинки с оптической осью, ориентированной под 135°, за которой следует полуволновая пластинка с оптической осью, ориентированной вертикально.


Решение для упражнения 1.27

c) Матрица (1.5a) принимает вид матрицы Адамара при 2α = 5π/4. Операция Адамара, следовательно, может быть реализована при помощи полуволновой пластинки с оптической осью, ориентированной под углом 5π/8 = 112,5°.


Решение для упражнения 1.28


Решение для упражнения 1.29. Начнем с того, что запишем оператор наблюдаемого для измерения в каноническом базисе в нотации Дирака согласно определению (1.12):

(1) |H⟩⟨H| + (–1) |V⟩ ⟨V|. (Р1.18)

Это эквивалентно оператору Паули [см. (1.6с)].

Аналогичным образом, воспользовавшись табл. 1.1, найдем для измерения в диагональном базисе


Решение для упражнения 1.30

a) Оператор наблюдаемого задан (1.12). Поскольку собственные значения наблюдаемого действительны (т. е. 𝑣i* = 𝑣i), сопряженный оператор равен ему же:

b) Это следует из спектральной теоремы (упр. A.60).


Решение для упражнения 1.31. Начнем с матрицы Паули

Мы ищем собственные значения и собственные векторы этой матрицы (подробности данной процедуры см., например, в решении для упр. A.64). Характеристическое уравнение принимает вид:

Решив это уравнение относительно 𝑣, находим, что собственные значения равны 𝑣1,2 = ±1.

Теперь, решая уравнение получаем собственный вектор связанный с каждым из этих собственных значений. Уравнение приобретает вид

из которого при 𝑣1 = 1 находим α = β. Применяем условие нормирования α2 + β2 = 1 и определяем нормированный собственный вектор

Использовав эту же процедуру при 𝑣2 = –1, получаем:

Теперь мы, следуя той же процедуре, вычисляем собственные векторы и собственный базис для двух остальных матриц Паули. Для получаем 𝑣1,2 = ±1 и

Матрица уже диагональна, так что 𝑣1,2 = ±1 и

Эти результаты согласуются с альтернативным определением матриц Паули из упр. 1.29.

Обратите внимание, что во всех трех случаях матричные представления операторов Паули в их собственных базисах состоят из собственных значений, размещенных по диагонали:


Решение для упражнения 1.32

a) Пользуясь (Б.1), мы можем написать, что величина математического ожидания задается как

где 𝑣i — величина, полученная при измерении, а pri — вероятность обнаружить |ψ⟩ в состоянии |𝑣i⟩. Эта вероятность равна

pri = |⟨𝑣i|ψ⟩|2 = ⟨ψ|𝑣i⟩⟨𝑣i|ψ⟩ (Р1.26)

и отсюда

b) По аналогии с пунктом a) пишем

Преобразуя оператор в правой части (1.15), получим

Тогда квантовое среднее значение этого оператора

а это то же самое, что правая часть уравнения (Р1.29).

Чтобы доказать (1.16), воспользуемся результатом упр. Б.2 в качестве аргумента в пользу того, что

Первое слагаемое в этом выражении представляет собой величину матожидания оператора


Решение для упражнения 1.34. Эксперимент, о котором идет речь, эквивалентен измерению наблюдаемого N раз и суммированию всех результатов. Статистика такого суммирования вычислена в упр. Б.5. Применив результат упр. 1.33, выясняем, что значение математического ожидания NσZ⟩ = 0, а неопределенность


Решение для упражнения 1.35. Если |ψ⟩ — собственное состояние оператора то имеют место равенства и

Следовательно,

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука