Читаем Отличная квантовая механика полностью

|ψ(t)⟩ = (e—iωt|H⟩⟨H|+eiωt|V⟩⟨V|)|H⟩ = —eiωt|H⟩.

Для начального состояния |ψ(0)⟩ = |+⟩:

Метод III. Пусть

Это выражение означает, что для каждой строки матрицы в левой и правой частях должно выполняться дифференциальное уравнение, поэтому мы можем переписать его в виде системы обыкновенных дифференциальных уравнений

Коэффициенты A и B могут быть получены из начальных условий. Если начальное состояние то имеем A = 1, B = 0, и таким образом

Если начальное состояние то мы находим, что и, следовательно,

что соответствует результату, полученному двумя остальными методами.

b) Метод I. Собственные состояния гамильтониана теперь равны |+⟩ и |—⟩, с соответствующими собственными значениями E± = ±ℏω. Начальное состояние |H⟩ раскладывается согласно и эволюционирует в соответствии с

Начальное состояние |+⟩ есть собственное состояние гамильтониана:

Метод II. Оператор эволюции теперь равен

Эволюция во времени для фотона, исходно находившегося в состоянии |ψ(0)⟩ = |H⟩, такова:

Для начального состояния |ψ(0)⟩ = |+⟩:

|ψ(t)⟩ = (e—iωt|+⟩⟨+|+eiωt|-⟩⟨-|)|+⟩ = —eiωt|+⟩.

Метод III. Чтобы применить матричный метод решения уравнения Шрёдингера, мы вновь разложим |ψ(t)⟩ согласно выражению (Р1.55). Матрица гамильтониана принимает вид:

Вот система уравнений для компонентов состояния:

Чтобы решить эту систему, мы можем, например, взять производную обеих частей первого уравнения и подставить из второго:

Решение данного уравнения имеет вид

ψH(t) = Aeiωt + Be—iωt

и, соответственно,

Для начального состояния |H⟩ имеют место равенства ψH(0) = 1 и ψV(0) = 0, следовательно, A = B = 1/2, и таким образом

Для начального состояния |+⟩ получаем следовательно, A = 0, а значит


Решение для упражнения 1.48. Преобразования поляризационных состояний полуволновыми пластинками под углами 0 и 45° задаются операторами —|H⟩⟨H|+|V⟩⟨V| и — (|+⟩⟨+|)+(|—⟩⟨—|) соответственно (см. упр. 1.24). Сравнивая их с операторами эволюции (Р1.54) и (Р1.56) соответственно, мы видим, что они становятся идентичными с точностью до глобального фазового множителя, когда ωtHWP = π/2 в обоих случаях. Четвертьволновая пластинка соответствует эволюции за промежуток времени, равный половине промежутка времени для полуволновой пластинки, т. е. ωtQWP = π/4.

Глава Р2. Решения к упражнениям главы 2

Решение для упражнения 2.1. Выберем произвольное |a⟩ ∈ 𝕍A и рассмотрим сумму Согласно (2.3a), находим Иными словами, прибавление к элементу 𝕍A⊗ 𝕍B не изменило этот элемент. Используя упр. A.2, b), получаем, что должен быть нулевым элементом 𝕍A⊗ 𝕍B.

Второе тождество доказывается аналогично.


Решение для упражнения 2.2. Для простоты рассмотрим гильбертово пространство поляризаций двух фотонов и покажем, что B = {|H⟩ ⊗|H⟩,|H⟩ ⊗|V⟩,|V⟩ ⊗|H⟩,|V⟩ ⊗|V⟩}, является его базисом.

Во-первых, докажем, что B — остов этого пространства. Рассмотрим произвольный разделимый вектор |a⟩ ⊗ |b⟩ из 𝕍A ⊗ 𝕍B. Разложив |a⟩ и |b⟩ по каноническим базисам их родных гильбертовых пространств, так что

|a⟩ = aH|H⟩ + aV|𝑣⟩,

|b⟩ = bH|H⟩ + bV|𝑣⟩,

используем (2.2) и (2.3), чтобы записать

|a⟩ ⊗ |b⟩ = aH bH |H⟩ ⊗ |H⟩ + aH bV |H⟩ ⊗ |V⟩ + aV bH |V⟩ ⊗ |H⟩ + aV bV |V⟩ ⊗ |V⟩. (Р2.1)

Иными словами, любой разделимый элемент 𝕍A⊗ 𝕍B может быть записан как линейная комбинация элементов B. Это свойство легко обобщается на запутанные векторы, потому что любой запутанный вектор представляет собой линейную комбинацию разделимых векторов.

Во-вторых, нам нужно доказать, что B линейно независимо. Это следует из того, что все элементы B ортогональны друг другу [см. (2.4)] и что любое множество взаимно ортогональных векторов линейно независимо (упр. A.17).


Решение для упражнения 2.3. Поскольку имеет место равенство

Состояние |30°⟩ ⊗ |R⟩ разделимо.


Решение для упражнения 2.4

a) Прежде всего представим оба состояния в каноническом базисе:

Отсюда следует, что

b) Поскольку и |P⟩, и |Ω⟩ разделимы, имеет место равенство:

⟨П|Ω⟩ = −i(2⟨H|−i⟨V|)(2i|H⟩−3i|V⟩) × (⟨H|−i⟨V|)(|H⟩+|V⟩)/2 = −i[2×(2i)+(−i)×(−3i)][1×1+(−i)×1]/2 = −i(−3+4i)(1−i)/2 = (7−i)/2.


Решение для упражнения 2.6. Рассмотрим, например, |Φ+⟩. Предположим, что это состояние может быть записано как произведение:

+⟩ = |aA ⊗ |bB, (Р2.2)

где |a⟩ и |b⟩ — некоторые состояния в 𝕍A и 𝕍B соответственно. Эти состояния можно разложить по каноническим базисам их пространств:

|a⟩ = aH |H⟩ + aV |V⟩;

|b⟩ = bH |H⟩ + bV |V⟩.

Подставив эти разложения в (Р2.2), сравнив результат с определением |Φ+⟩ из (2.5c) и воспользовавшись единственностью разложения вектора в базисе, находим

Из второго уравнения этой системы нам становится ясно, что или aH = 0, или bV = 0. Поэтому либо aH bH, либо aV bV должно обнулиться, что противоречит первому или четвертому уравнениям системы (Р2.3).

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука