Читаем Отличная квантовая механика полностью

Сравнивая последние два уравнения, получаем требуемое тождество.


Решение для упражнения 2.21

a) Если операторы Â в 𝕍A и в 𝕍B эрмитовы, их матрицы удовлетворяют и Тогда в соответствии с результатом упр. 2.13:

При перестановке и транспонировании матрицы получается та же матрица, а это признак эрмитова оператора (упр. A.53).

b) Если оператор Â в 𝕍A унитарен, он отображает ортонормальный базис {|𝑣i⟩} на другой ортонормальный базис {|𝑣i⟩} (см. упр. A.81). Подобным образом унитарный оператор в 𝕍B преобразует ортонормальные базисы {|ωi⟩} и {|ωi⟩} друг на друга. Тензорное произведение Â и отображает друг на друга {|𝑣i ωj⟩} и {|𝑣iωj⟩}, которые тоже являются ортонормальными базисами. Оператор, обладающий таким свойством, должен быть унитарным.


Решение для упражнения 2.22. Локальный оператор — частный случай тензорного произведения операторов, который, согласно упр. 2.17, не может преобразовывать разделимое состояние в запутанное.

Обратная операция также невозможна, потому что любой унитарный оператор обратим. Если бы существовал унитарный оператор, реализующий такое преобразование, то оператор, обратный к нему, превращал бы разделимое состояние в запутанное, а это невозможно.


Решение для упражнения 2.23


Решение для упражнения 2.24

b) Поскольку Â и эрмитовы, они имеют спектральные разложения и где {|𝑣i⟩} и {|ωj⟩} суть ортонормальные базисы в пространствах Алисы и Боба соответственно. Следовательно,

где {|𝑣i ωj⟩} — ортонормальный базис в 𝕍 ⊗ 𝕎. Поскольку |Ψ⟩ представляет собой собственное состояние с собственным значением x, это означает в соответствии с упр. A.66, что его можно записать в виде линейной комбинации только тех элементов базиса {|𝑣i ωj⟩}, для которых

А это значит, что состояние |Ψ⟩, если его измерить в базисе {|𝑣i⟩ ⊗ |ωj⟩}, спроецируется на один из этих базисных элементов. Измерение Â Алисой и Бобом вместе образуют совместное измерение |Ψ⟩ в базисе {|𝑣i ωj⟩}. Данное измерение, таким образом, даст пару векторов |𝑣i⟩ ⊗ |ωj⟩, для которых выполняется (Р2.11). Но также имеет место равенство

где ai и bj суть значения наблюдаемых, связанные с |𝑣i⟩ и |ωj⟩. Сравнивая уравнения (Р2.11) и (Р2.12), находим, что ai bj = x.


Решение для упражнения 2.25


Решение для упражнения 2.26

a) Если |ψA,B(t)⟩ — решения уравнения Шрёдингера в соответствующих пространствах:

то для их тензорного произведения имеет место равенство

c) Поскольку собственные состояния локальных гамильтонианов ĤA,B образуют ортонормальные базисы (упр. A.60), тензорные произведения этих собственных состояний образуют ортонормальный базис в гильбертовом пространстве тензорных произведений 𝕍A ⊗ 𝕍B (упр. 2.2). Любое собственное состояние |ΨE⟩ оператора Ĥ с энергией E может быть разложено по этому базису.

Теперь предположим, что данное разложение содержит член |ψA⟩ ⊗ |ψB⟩, которому соответствует энергия EA + EBE. Тогда, как мы обнаружили в пункте b), этот член является также собственным состоянием полного двусоставного гамильтониана с собственным значением, не равным E. Но из спектральной теоремы (упр. A.60) следует, что собственные состояния наблюдаемого, соответствующие разным его собственным значениям, ортогональны друг другу. Это означает, что член |ψA⟩ ⊗ |ψB⟩ ортогонален |ΨE⟩. Но разложение вектора по базису не может содержать членов, ортогональных этому вектору. Мы пришли к противоречию.


Решение для упражнения 2.27. Согласно упр. 2.9, состояние |Ψ⟩ может быть записано как

Это выражение подразумевает, что всякий раз, когда у Алисы есть фотон в состоянии |θ⟩, фотон Боба находится в состоянии Поскольку оба слагаемых имеют амплитуду соответствующие вероятности составят 1/2.


Решение для упражнения 2.28. Поскольку и имеет место равенство:

а это то же самое, что (2.13).


Решение для упражнения 2.29. Согласно (2.16),

В последнем уравнении мы воспользовались тем, что состояние |Ψ⟩ нормировано.


Решение для упражнения 2.30

a) Мы можем переписать интересующее нас состояние как

Соответственно, ⟨Ψ|Ψ⟩ = 3𝒩2, так что .

b) Чтобы переписать состояние |Ψ⟩ в виде (2.15), сгруппируем слагаемые, связанные с горизонтальной и вертикальной поляризацией у Алисы, и пронормируем каждое слагаемое заново:

c) Из приведенного выше результата следует, что Алиса обнаружит |H⟩ с вероятностью и в этом случае состояние, приготовленное у Боба, будет состояние же |V⟩ Алиса обнаружит с вероятностью в таком случае состояние, приготовленное у Боба, будет |V⟩.


Решение для упражнения 2.31

⟨ψБоб|Ω⟩ = (2⟨H| − i⟨V|)Боб(2 |HH⟩ + 3 |HV⟩ + 4 |VH⟩) = 2 |HАлиса(2⟨H| − i⟨V|)Боб|HБоб + 3 |HАлиса(2⟨H| − i⟨V|)Боб|VБоб + 4 |VАлиса(2⟨H| − i⟨V|)Боб|HБоб = (4 |H⟩ − 3i|H⟩ + 8 |V⟩)Алиса = [(4 − 3i)|H⟩ + 8 |V⟩]Алиса;

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука