Читаем Отличная квантовая механика полностью

И момент импульса, и магнитный момент представляют собой векторы, направленные ортогонально к плоскости орбиты. Поэтому полученное выражение верно и в векторном виде.


Решение для упражнения 4.55

a) Уравнение (4.67) верно для всех трех компонентов момента импульса — в частности, для компонента z:

μz = γLz.

Состояние с определенным магнитным квантовым числом m — это собственное состояние с собственным значением Lz. = ℏm. Таким образом, можно записать компонент z магнитного момента в этом состоянии как

μz = γℏm.

b) Выберем направление оси z вдоль Тогда, согласно (4.66), имеет место равенство

E = —μzB = —γℏmB.


Решение для упражнения 4.57. Состояние электрона соответствует точке (θ, φ) на сфере Блоха и раскладывается по каноническому базису согласно (4.62). Поскольку эксперимент Штерна — Герлаха представляет собой измерение компонента спина вдоль магнитного поля — т. е. наблюдаемого — получаем


Решение для упражнения 4.58. Уравнение (4.75) выводится в предположении, что магнитное поле указывает вдоль оси z. Проекция спинового вектора на эту ось (т. е. направление поля) играет роль наблюдаемого, определяющего базис измерения. Градиент же определяет лишь направление силы, действующей на частицу.


Решение для упражнения 4.59. Подпространство, связанное с s = 1, трехмерно, так что оператор измеряемый в этом эксперименте, имеет три собственных значения. Следовательно, измерение может дать три возможных результата. Чтобы найти долю каждого из них, мы воспользуемся постулатом об измерениях [уравнение (1.3)] и результатом упр. 4.27. Для измерения состояния |ψ⟩ = |mx = 0⟩ имеем

Поэтому, хотя в общем случае в эксперименте Штерна — Герлаха с частицами со спином 1 мы ожидаем увидеть три точки на экране-мишени, в данном случае в средней точке событий не будет; вероятности делятся поровну между двумя крайними точками, соответствующими my = ±1.


Решение для упражнения 4.60. Измерение Штерна — Герлаха — это измерение спинового компонента при определяемом полярными углами (θ0, 0). Вероятности возможных результатов задаются постулатом об измерениях квантовой механики: pri = |⟨ψ|𝑣⟩|2, где |ψ⟩ — начальное состояние, каноническое представление которого есть а |𝑣i⟩ — собственные состояния заданные уравнением (Р4.37). Таким образом, вероятности результатов равны


Решение для упражнения 4.61. Эволюция в представлении Гейзенберга k-го компонента момента импульса под действием гамильтониана (4.76) выглядит так:

Последняя строка равна k-му компоненту вектора что идентично классическому результату (4.68).


Решение для упражнения 4.62

a) Гамильтониан, связанный с магнитным полем вдоль оси z, задается выражением

Эволюцией спина электрона управляет уравнение Шрёдингера

решением которого является

Эта матричная экспонента была уже нами вычислена в упр. A.94:

Применив данную эволюцию к собственному состоянию (4.62) спина ориентированного вдоль вектора определяемого полярными углами (θ0, φ0), получаем

Сравнив этот результат с (4.62), мы видим, что состояние после эволюции физически эквивалентно собственному состоянию спина где определяется сферическими углами (θ0, φ0 — ΩLt). Иными словами, спин прецессирует с частотой ΩL вокруг оси z.

Траектория на сфере Блоха соответствует параллели с полярным углом[148] θ0 (рис. Р4.2, a).

Процедура Штерна — Герлаха представляет собой измерение Ŝz в состоянии |ψ(t)⟩. Мы находим, что вероятность обнаружить |↑⟩ есть а Эти вероятности не зависят от времени.

b) Поскольку магнитное поле ориентировано в направлении y, мы можем записать

Начальному состоянию соответствует вектор

Решение уравнения Шрёдингера в данном случае

Сославшись вновь на упр. A.94:

Сферические координаты на сфере Блоха таковы: (θ = ΩLt, φ = 0). Соответственно траектория на блоховской сфере — это меридиан, пересекающий ось x (рис. Р4.2, b). Измерение Штерна — Герлаха даст вероятности pr = cos2Lt/2) и pr = sin2Lt/2).

c) Мы действуем по той же схеме, что и в пункте (b), но гамильтониан здесь равен:

где — «вектор», составленный из операторов Паули. Эволюция под действием этого гамильтониана задается выражением

где — вектор единичной длины в направлении магнитного поля.

Теперь мы можем воспользоваться результатом упр. A.93. Находим:

Применив этот оператор эволюции к начальному состоянию получаем

Соответствующий вектор на сфере Блоха имеет сферические углы

Когда это состояние подвергается измерению Штерна — Герлаха, вероятности обнаружить состояния «спин-вверх» и «спин-вниз» равны соответственно

pr = |⟨↑|ψ(t)⟩|2 = cos2Lt / 2) + sin2Lt / 2)cos2θ0; (Р4.42a)

pr = |⟨↓|ψ(t)⟩|2 = sin2Lt / 2)sin2θ0. (Р4.42b)

Соответствующая траектория показана на рис. Р4.2 c. Она представляет собой окружность вокруг вектора магнитного поля, которая включает в себя северный полюс (первоначальное состояние).


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука