Читаем Отличная квантовая механика полностью

Поначалу это может показаться странным. Согласно (3.1a), скалярное произведение координатного собственного состояния |x⟩ на самого себя есть ⟨x | x⟩ = δ (0), так что такое состояние имеет бесконечную норму. Как это согласуется с аксиомой гильбертова пространства квантовой механики, которая гласит, что все физические состояния должны иметь норму 1? Вот что мы на это ответим: собственные состояния непрерывных наблюдаемых нефизичны — невозможно поместить частицу в абсолютно точную позицию или заставить ее двигаться с абсолютно точной скоростью. Поэтому правило нормирования для физических состояний не применимо к |x⟩ или |p⟩; эти состояния представляют собой всего лишь математическую абстракцию[76]. Все физически реалистичные состояния, имеющие некоторую неопределенность в значении как координаты, так и импульса, действительно имеют единичную норму согласно постулату.

Любое квантовое состояние |ψ⟩ может быть разложено по базису, связанному с непрерывным наблюдаемым:

Это уравнение заменяет уравнение (A.1) для разложения состояния по дискретному базису: сумму здесь сменяет интеграл. Функция ψ(x) называется волновой функцией состояния |ψ⟩ в x-базисе (или x-представлении) и является аналогом, в случае непрерывного наблюдаемого, столбцового представления вектора в гильбертовом пространстве конечной размерности. Взяв сопряженные величины от обеих сторон (3.2), а именно

мы обнаруживаем также, что волновая функция вектора ⟨ψ| равна ψ* (x).


Упражнение 3.1. Покажите, что можно построить следующие непрерывные аналоги основных дискретных соотношений:

a) вместо (A.6):

ψ(x) = ⟨x | ψ⟩; (3.4)

b) вместо (A.26):

c) вместо (A.4):

Отступление 3.1. Если использовать правило нормирования для конечной размерности

Что если мы захотим избежать использования обобщенных функций и попробуем применить правила нормирования для конечных размерностей к гильбертову пространству непрерывной переменной? К сожалению, при этом не получится разработать непротиворечивый набор отношений между состояниями, волновыми функциями и наблюдаемыми. Например, пусть

Тогда, подставив (3.2) в (3.4), получим:

Последнее выражение в строке выше содержит интеграл функции, которая имеет ненулевое конечное значение всего в одной точке x' = x и потому обращается в нуль. Таким образом, в предположении (3.7) волновые функции всех физических состояний будут равны нулю.


Упражнение 3.2. Покажите, что для физических состояний


Упражнение 3.3. Вычислите нормирующий множитель A для состояний со следующими волновыми функциями:

a) прямоугольная функция

b) гауссова функция


Упражнение 3.4. Найдите волновую функцию состояния с определенной координатой |x0⟩ в координатном базисе.

Как и в дискретном случае, операторы, связанные с непрерывными наблюдаемыми, задаются как

Функции операторов, естественно, определяются как

Для произвольного оператора Â двумерная функция

A (x, x') = ⟨x |Â| x'⟩(3.13)

называется матричным элементом этого оператора.

Как мы увидим далее, по аналогии со случаем дискретной переменной, матричный элемент ⟨x |Â| x'⟩, будучи функцией x и x', содержит полную информацию об операторе. В более общем случае мы можем производить операции с состояниями и операторами, представленными одно- и двумерными функциями соответственно, так же как мы оперируем с матрицами в дискретном случае, но заменяя суммирование интегрированием.


Упражнение 3.5. Покажите, что


Упражнение 3.6. Докажите, что:

a) любой оператор Â можно записать в виде

где A (x, x') задается уравнением (3.13);

b) для любой операторной функции

c) для любого оператора Â и любых двух состояний |ψ⟩, |ϕ⟩

d) волновая функция состояния Â | ψ⟩ равна

e) волновая функция состояния ⟨ψ|Â равна

f) матричные элементы оператора Â и сопряженного с ним оператора Â связаны соотношением

(A) (x, x') = A* (x', x); (3.19)

g) произведение операторов может быть записано через их «матрицы» как

А теперь давайте переформулируем постулат квантовой механики об измерениях для случая непрерывного наблюдаемого. Предположим, что наблюдаемое измерено в квантовом состоянии |ψ⟩ с волновой функцией ⟨x|ψ⟩ = ψ(x). Каково распределение вероятностей для возможных результатов этого измерения? В разд. Б.4 мы ввели понятие плотности вероятности pr (x) непрерывной переменной, такой что вероятность обнаружения x в определенном интервале [x', x''] равна

Выразим pr (x) через ψ(x).

Согласно постулату об измерениях для дискретного случая, вероятность проецирования на какой-то конкретный элемент |𝑣i⟩ базиса измерений равна |⟨𝑣i|ψ⟩|2. Для непрерывного случая это правило не годится, поскольку вероятность обнаружить частицу в точности в точке x бесконечно мала. Разумно, однако, сказать, что допустимая мера вероятности, связанная с координатой x, — плотность ее вероятности — должна быть пропорциональна |⟨x|ψ⟩|2 = |ψ(x) |2. Таким образом, мы имеем pr (x) ∝ |ψ(x)|2.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука