Читаем Отличная квантовая механика полностью

Чтобы найти коэффициент пропорциональности, вспомним для начала, что согласно свойствам плотности вероятностей [ср. с (Б.12)]. Помимо этого для нормированного состояния мы имеем также как в (3.6). Сравнивая эти два условия, обнаруживаем:

pr (x) = |ψ(x)|2. (3.22)

На какое состояние спроецируется |ψ⟩ после измерения? Как уже обсуждалось, очевидный ответ |x⟩ нефизичен. Тем не менее он полезен в качестве приближения для многих теоретических рассуждений — только нужно не забывать о нормировании. Более реалистичный с физической точки зрения ответ будет зависеть от конкретных особенностей измерительной аппаратуры; в общем случае будет получена некоторая суперпозиция или статистическая смесь множества координатных собственных состояний в пределах определенной близкой окрестности x.


Упражнение 3.7. Используя выражения (Б.13) и (Б.14) для среднего значения и дисперсии непрерывной случайной переменной, покажите, что для непрерывного квантового наблюдаемого измеренного в состоянии |ψ⟩:

a) математическое ожидание задается формулой

b) § дисперсия задается формулой

Полученные в этом разделе данные суммированы в табл. 3.1.

3.2. Волна де Бройля

В предыдущем разделе мы разобрали математический аппарат для работы с гильбертовыми пространствами, натянутыми на собственные состояния некоторого непрерывного наблюдаемого, например координаты или импульса. Но координата и импульс представляют собой операторы в одном и том же физическом гильбертовом пространстве, связанном с движением частицы. Свяжем эти два наблюдаемых друг с другом, постулируя отношение между их собственными состояниями:

Формула (3.25) утверждает, что волновая функция состояния с определенным значением импульса представляет собой бесконечную волну, известную как волна де Бройля. Эта волна — проявление корпускулярно-волнового дуализма, т. е. способности всей квантовой материи демонстрировать свойства как частицы, так и волны (ср.: разд. 1.5).

Волна де Бройля не может быть выведена из квантово-механических постулатов, которые мы изучали до сих пор. Она, скорее, является обобщением множества экспериментальных наблюдений и теоретических озарений. История того, как ученые пришли к волне де Бройля, кратко описана в отступлении 3.2.

Может показаться странным, что в уравнении (3.25) отсутствует зависимость от времени, хотя само понятие волны подразумевает, что такая зависимость должна там быть. И действительно, применяя в разд. 3.4 уравнение Шрёдингера, мы получим движущуюся волну. Однако пока же давайте абстрагируемся от этого движения и рассмотрим связь между базисами, образованными собственными состояниями координаты и импульса, которые определяются как независимые от времени.


Упражнение 3.8. Покажите, что длина волны де Бройля, заданной уравнением (3.25), связана со значением импульса выражением

т. е. точно так же, как связаны импульс фотона и оптическая длина волны (отступление 1.1).


Упражнение 3.9. Оцените длину волны де Бройля для:

a) автомобиля;

b) молекул воздуха при комнатной температуре;

c) электронов с кинетической энергией 100 кэВ в электронном микроскопе;

d) атомов рубидия в конденсате Бозе — Эйнштейна при температуре 100 нК.


Упражнение 3.10. Покажите, что, согласно (3.25), собственные состояния координаты и импульса могут быть выражены одно через другое следующим образом:

Волна де Бройля имеет бесконечную протяженность в пространстве. Это согласуется с принципом неопределенности: волновая функция состояния с определенным импульсом имеет бесконечную неопределенность по координате. Однако интерпретация квадрата абсолютной величины волновой функции де Бройля — константы — как плотности вероятности абсурдна, ибо ее интеграл по всему пространству равен бесконечности.

Здесь опять же играет роль нефизичность собственного состояния импульса, которая означает, что плотность вероятности для него не имеет смысла. Физически реалистичные состояния представляют собой линейные комбинации собственных состояний импульса, так что неопределенность координаты для них может быть ограниченной. Мы вскоре рассмотрим это более детально — когда будем обсуждать гауссовы волновые пакеты.

Рассуждения де Бройля объясняют экспоненту в (3.25), но не нормирующий множитель. Следующее упражнение показывает, откуда он берется.

Отступление 3.2. История открытия де Бройля

В 1913 г. Нильс Бор, воспользовавшись концепцией Планка, разработал собственную модель атома, согласно которой орбиталь электрона стабильна, если его момент импульса в целое число раз больше ℏ. Однако модель Бора была чисто эмпирической. Хотя она, казалось, объясняла экспериментальные результаты, стоящие за ней физические принципы оставались загадкой.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука