Читаем Отличная квантовая механика полностью

Луи де Бройль предложил концепцию своей волны в 1924 г. в диссертации на соискание докторской степени. К этому моменту Планк и Эйнштейн уже определили отношения между длиной волны фотона, его частотой, энергией и импульсом, а Комптон подтвердил их экспериментально (отступление 1.1). Де Бройль предположил, что соотношение E = ℏω не ограничивается световыми частицами. Напротив, любую частицу с определенной энергией можно связать с волной, частота которой задается формулой Планка. Затем де Бройль при помощи специальной теории относительности Эйнштейна показал, что длина этой волны должна задаваться уравнением (3.26), т. е. тем же выражением, что и для фотона.

Де Бройль использовал свое предположение, чтобы переформулировать модель атома Нильса Бора (отступление 4.2). Он выдвинул гипотезу о том, что орбиталь электрона стабильна, если в длину ее окружности укладывается целое число n длин волны де Бройля:

r = nλdB, (3.28)

где r — радиус орбитали. Таким образом, волна, связанная с движущимся по орбите электроном, испытывает конструктивную интерференцию сама с собой. Эта гипотеза позволила ученому теоретически предсказать спектры атомов, идентичные спектрам Бора (упр. 4.42) и согласующиеся с экспериментальными данными.

Подобное совпадение послужило сильным аргументом в пользу гипотезы де Бройля. Еще более непосредственное свидетельство было получено в Лабораториях Белла в 1927 г. Клинтон Дэвиссон и Лестер Джермер, наблюдая рассеяние пучка электронов на кристаллической решетке никеля, обнаружили, что полученное экспериментально угловое распределение рассеянных электронов согласуется с законами дифракции, известными из оптики. Единственным возможным объяснением такого поведения является волноподобная природа электронов.


Упражнение 3.11. Выразив два произвольных собственных состояния импульса |p⟩ и |p' как волны де Бройля в соответствии с (3.27a) и пользуясь ⟨x|x'⟩ = δ (x — x'), вычислите ⟨p|p'⟩ и убедитесь, что ваш результат согласуется с условием ортонормальности ⟨p|p'⟩ = δ(p — p').

Волновое число волны де Бройля равно

Иногда удобно работать с собственными состояниями импульса |p⟩ в физически эквивалентном им виде собственных состояний волнового числа |k = p/ℏ⟩, поскольку в этом случае нам не нужно беспокоиться о постоянной Планка в показателе экспоненты.

Однако есть одна тонкость. Собственные состояния волнового числа, как и любого другого непрерывного наблюдаемого, нормируются в соответствии с

k | k'⟩ = δ (k — k'). (3.30)

Но, как нам известно из (Г.6), δ (k — k') = δ [(p — p')/ℏ] = ℏδ (p — p') = ℏ⟨p | p' ⟩. Мы вынуждены заключить, что

Вот еще один абсурдный, на первый взгляд, результат: два вектора, представляющие одно и то же состояние — состояние с определенным импульсом, имеют разную норму. Это опять же следствие нефизичного характера нормирования для собственных состояний непрерывных наблюдаемых.


Упражнение 3.12§. Покажите, что волновая функция де Бройля для собственного состояния волнового числа принимает вид:

Покажите, что собственные состояния координаты и волнового числа выражаются друг через друга согласно

Проверьте согласованность результата с условием нормирования (3.30).

3.3. Координатный и импульсный базисы

3.3.1. Преобразование между координатным и импульсным базисами

Поговорим о проблеме преобразования представлений различных состояний и операторов между координатным и импульсным базисами. Как и в дискретном случае, главным инструментом такого преобразования является разложение единичного оператора, т. е. мы используем тот факт, что оператор (3.5)

можно вставить в любое выражение со скалярным произведением.


Упражнение 3.13. Найдите явные формулы для преобразования координатного представления ψ(x) заданного квантового состояния |ψ⟩ в импульсное представление и обратно.

Ответ:


Упражнение 3.14§. Покажите, что преобразование волновой функции в координатном представлении в представление в базисе волновых чисел, а также обратное преобразование задаются, соответственно, прямым и обратным преобразованием Фурье:

В данном курсе для обозначения волновых функций в импульсном представлении или представлении на основе волнового числа мы будем использовать тильду [к примеру, или


Упражнение 3.15. Как мы знаем (разд. A.4), скалярное произведение любых двух состояний |ψ⟩ и |ϕ⟩ не зависит от базиса, в котором оно вычисляется. Убедитесь в этом явно для координатного и импульсного базисов, т. е. покажите, что

используя только соотношения (3.36) и свойства преобразования Фурье.


Упражнение 3.16. Покажите, что для состояния с действительной волновой функцией ψ(x) выполняется pr (p) = pr (—p), а математическое ожидание для наблюдаемого импульса равно нулю.


Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука