Читаем Отличная квантовая механика полностью

В качестве примера рассмотрим взаимоотношения между импульсом и кинетической энергией. Наблюдаемое импульса равно

и это означает, согласно определению, данному в подразд. 1.9.1, что множество всех кет-векторов |p⟩ образует ортонормальный базис гильбертова пространства, а каждый из этих кет-векторов обозначает состояние частицы с определенным значением импульса p.

Далее, каждое такое состояние характеризуется также определенной кинетической энергией K = p2/2M. Следовательно, наблюдаемое кинетической энергии должно записываться, согласно тому же определению, как:

Но, согласно определению A.25 для операторных функций, это выражение может быть записано просто как:

До сих пор мы обсуждали статические, не зависящие от времени свойства волны де Бройля. Теперь давайте посмотрим, как эта волна эволюционирует во времени. В разд. 1.10 постулировалось, что квантовая эволюция определяется гамильтонианом, который представляет собой сумму кинетической и потенциальной энергий. Эти энергии являются функциями координаты и импульса частицы:

Этот гамильтониан идентичен классическому, за исключением того, что канонические наблюдаемые здесь записываются как операторы (обсуждение того, почему мы можем это делать, см. в отступлении 3.4). Здесь M — это масса частицы, — оператор кинетической энергии, а — потенциальная энергия, которая является функцией наблюдаемого оператора координаты.

Движение частицы и эволюция ее состояния зависят от конкретного вида потенциала Давайте начнем с простейшего случая V (x) ≡ 0 (эволюция в свободном пространстве). При этом условии любое собственное состояние |p⟩ оператора импульса с собственным числом p является также собственным состоянием гамильтониана (3.55) с собственным значением (энергией) E = p2/2M.


Упражнение 3.28. Покажите, что волновая функция, описывающая эволюцию состояния |p⟩ под действием гамильтониана (3.55) при V(x) ≡ 0, задается выражением

Согласно этому результату, поведение волновой функции собственного состояния импульса во времени аналогично поведению движущейся волны с волновым числом k = p/ℏ и угловой частотой

Эволюция этой волны представляет собой равномерное движение с фазовой скоростью (отступление 3.5) 𝑣ph = λdB/T = w/k = p/2M, где T = 2π/ω — период, связанный с волновым движением.

Удивительным образом данная фазовая скорость отличается от величины p/M, которая ожидалась бы в классическом случае. Объясняется это тем, что в (нефизичном) собственном состоянии импульса координата полностью неопределенна, а вероятность нахождения частицы одинакова по всей одномерной вселенной. Эта вероятность не меняется во времени. Соответственно, фазовая скорость волны де Бройля не соответствует непосредственно движению вещества.

Чтобы понять, как эволюция Шрёдингера переходит в движение, нам нужно изучить состояние, волновая функция которого локализована до некоторой степени в пространстве (для таких волновых функций мы используем термин волновой пакет). Движение этих волн управляется групповой скоростью:

в точном соответствии с классическими ожиданиями[82].

Посмотрим, например, на гауссово состояние с ненулевым средним импульсом. В упр. 3.25 мы узнали, что его можно разложить на множество волн де Бройля. Каждая из этих волн эволюционирует в соответствии с (3.28). Как эта эволюция повлияет на волновой пакет в целом?


Упражнение 3.29*. Рассмотрим волновую функцию, которая в момент времени t = 0 имеет гауссов вид (3.51).

a) Найдите соответствующую волновую функцию в базисе волнового числа. Найдите эволюцию под действием гамильтониана свободного пространства.

b) Используйте обратное преобразование Фурье, чтобы найти волновую функцию ψ(x,t) в координатном базисе.

Подсказка: для прямого и обратного преобразований Фурье воспользуйтесь свойствами (Г.13) и (Г.14).

c) Найдите среднее значение ⟨x⟩ и дисперсию ⟨∆x2⟩ координаты в зависимости от времени.

Ответ:

Как и ожидалось, волновой пакет движется с эффективной групповой скоростью 𝑣gr = p0/M. Но помимо этого он расширяется со временем. Это явление, известное как расплывание волнового пакета (spreading of the wavepacket), является следствием дисперсии групповой скорости, т. е. того факта, что групповая скорость (3.58) неодинакова для разных значений k. В результате простое описание движения волновой функции на языке фазовой и групповой скоростей, как в отступлении 3.5, верно лишь приближенно.

Отступление 3.5. Фазовая и групповая скорости

Фазовая и групповая скорости (phase and group velocities) — это фундаментальные понятия волновой механики. Разберем их здесь коротко. Рассмотрим волну, распространяющуюся вдоль оси z:

W(z,t) = W0Re[eikz−iωt].

Конкретная природа волны не имеет значения: она может быть оптической, акустической или квантовой волной де Бройля. Приведенное выше уравнение можно переписать как:

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука