где 𝑣ph
= ω/Теперь предположим, что волна промодулирована, как показано на рисунке. В момент времени
где Δ
где ∆ω — приращение частоты, соответствующее приращению ∆
Групповая скорость определяет, например, скорость сигналов, переносимых волной. В системах, где волновое число пропорционально частоте (к примеру, электромагнитные волны в вакууме), фазовая и групповая скорости равны. Если соотношение между этими двумя величинами более сложное, эти скорости могут сильно различаться, порождая множество занятных явлений.
Полезно сравнить это поведение с поведением лазерных импульсов. Такие импульсы могут распространяться на большие расстояния в вакууме безо всякого расплывания, потому что групповая скорость света в вакууме постоянна; она не зависит от частоты или волнового числа. Но, если распространение происходит в преломляющей среде с сильной дисперсией, где коэффициент преломления — а следовательно, и групповая скорость — изменяется в зависимости от частоты, импульсы будут расплываться.
Исходя из приведенных выше результатов, мы знаем, что расширением можно пренебречь, если
Но даже для микроскопических объектов эффект расширения весьма трудно наблюдать экспериментально. Это связано, в частности, со взаимодействием частицы с другими объектами. Как обсуждалось в подразд. 2.4.2, такое взаимодействие приводит к декогеренции, которая вызывает коллапс состояния на координатное собственное состояние или смесь таких состояний, таким образом «заново запуская» расширение. Расширение подавляется также в том случае, если частица находится в потенциальной яме, изучением которой мы вскоре займемся.
Упражнение 3.30.
Оцените время, которое потребуется, чтобы:a) волновой пакет, описывающий единичный электрон с координатной неопределенностью порядка 1Å, расширился на 1 мм;
b) волновой пакет, описывающий металлический шарик массой 1 г с координатной неопределенностью порядка 1Å, расширился на 1 мм;
c) волновой пакет, описывающий 40-килограммовое зеркало интерферометра в гравитационном волновом проекте LIGO, координата которого известна с точностью
Упражнение 3.31.
Покажите, что если среднее значение импульса намного превосходит неопределенность импульса первоначального волнового пакета, то расстояние, пройденное центром волнового пакета за время3.5. Стационарное уравнение Шрёдингера
В оставшейся части этой главы мы будем изучать квантовое поведение точечной частицы в поле некоторой консервативной силы. Мы знаем, что это поведение управляется уравнением Шрёдингера. Вместо того чтобы искать его общее решение, мы сначала научимся выполнять более скромное задание:
Энергетические собственные состояния не только полезны для вычисления эволюции, но и физически значимы, поскольку часто образуют предпочтительный для декогеренции базис (см. подразд. 2.4.2). Это означает, что такие состояния и их статистические смеси возникают намного чаще, чем их же когерентные суперпозиции.
Кроме того, энергетические собственные состояния можно наблюдать экспериментально при помощи света. Переход между этими состояниями в атомах или молекулах связан с поглощением или излучением фотона, энергия которого ℏω равняется разнице соответствующих энергий в веществе. С помощью спектроскопии — измеряя длины волн, на которых происходит поглощение или излучение, — можно определить соответствующие энергии и тем самым проверить квантовые расчеты экспериментально.
Таким образом, наша задача — найти состояния |ψ⟩, такие что