Читаем Отличная квантовая механика полностью

Аналогичное рассуждение удается провести во всех практических случаях, поэтому волновую функцию можно всегда с уверенностью считать непрерывной — за исключением, возможно, каких-то чрезвычайно экзотических потенциалов. А вот производная волновой функции может демонстрировать разрывы всюду, где потенциал бесконечен или сингулярен.

Рассмотрим теперь другой крайний случай прямоугольной потенциальной ямы, важный как с образовательной, так и с научной точки зрения.


Упражнение 3.41. Найдите собственные значения энергии и волновые функции связанных стационарных состояний потенциала V (x) = —W0δ (x) в координатном базисе.

Подсказка: проинтегрируйте обе части стационарного уравнения Шрёдингера на бесконечно малом интервале вокруг x = 0 и воспользуйтесь уравнением (Г.9).

Ответ: Единственное собственное состояние с и волновой функцией (рис. 3.3):


Упражнение 3.42*. Получите результат предыдущего упражнения при помощи альтернативного метода. Решите стационарное уравнение Шрёдингера для конечной потенциальной ямы (3.65) аналитически в пределе бесконечно глубокой и узкой потенциальной ямы: a → 0, V0 = W0/a при W0 = const. Сколько связанных состояний может содержать эта потенциальная яма?


Упражнение 3.43. Частица находится в связанном состоянии потенциала V (x) = —W0δ (x). Потенциал этот внезапно меняется на V (x) = –2W0δ (x). Найдите вероятность того, что данная частица останется в связанном состоянии.


Упражнение 3.44*. Исследуйте связанные состояния потенциала

V (x) = —W0δ (x — a) — W0δ (x + a). (3.72)

Отступление 3.6. Мазер на аммиаке

«Двойная дельта-функция» в упр. 3.44 представляет собой теоретическую основу построения первого аммиачного мазера — предтечи современных лазеров, — сконструированного в 1953 г. Чарльзом Таунсом и его коллегами[83]. Источником излучения, использованным в этом мазере, была молекула аммиака NH3, показанная на рисунке справа. Молекула имеет форму пирамиды, основание которой образуют три атома водорода, а на вершине располагается атом азота. Такое его положение соответствует минимуму потенциальной энергии, представленному одной из дельта-функций. Другая дельта-функция соответствует зеркальному отражению этой же конфигурации, где атом азота располагается ниже плоскости основания. Обе конфигурации обладают одинаковой энергией, и существует ненулевая вероятность «перепрыгивания» атома азота из одной конфигурации в другую. В результате энергетическими собственными состояниями являются не верхнее и нижнее положения атома азота, но их симметричные и антисимметричные линейные комбинации, как в упр. 3.44. Именно переход между этими двумя состояниями порождает 24-гигагерцовое микроволновое излучение, испускаемое мазером.

a) Найдите уравнение для собственных значений энергии (рассмотрите и четный, и нечетный случай). Сколько решений оно имеет?

b) Покажите, что в пределе при a → ∞ это уравнение становится идентичным уравнению для единичной ямы.

c) Найдите выражение для значений энергии и волновых функций собственных состояний гамильтониана для потенциала (3.72) вплоть до первого порядка при ℏ2/W0Ma ≪ 1.

Ответ: энергии четного и нечетного состояний равны

Наблюдаемое здесь поведение часто встречается в квантовой механике. Так, протон образует притягивающий потенциал для свободного электрона; этот потенциал порождает связанные состояния, которые мы называем атомом водорода. Если имеются два удаленных друг от друга протона и один-единственный электрон, то состояния электрона, связанного с любым из протонов, соответствуют одному и тому же собственному значению энергии — так что это вырожденное значение. Но если протоны находятся достаточно близко друг к другу, и следовательно, на электрон действуют оба потенциала одновременно, то энергетические собственные состояния становятся нелокальными, а вырожденность собственного значения энергии снимается: энергетические уровни расщепляются, как в уравнении (3.73). Это расщепление можно использовать в практических приложениях, как рассказывается в отступлении 3.6. Более того, отрицательный сдвиг энергии одного из новых энергетических собственных состояний может превысить положительный потенциал, возникающий вследствие кулоновского отталкивания двух протонов; в такой ситуации будет образована молекула.


Упражнение 3.45. В условиях предыдущей задачи (удаленные друг от друга ямы) предположим, что в момент времени t = 0 частица локализована в первой яме (т. е. ее волновая функция — это волновая функция из упр. 3.41 с центром в x = a). Как будет себя вести вероятность найти ее во второй яме в зависимости от времени?

В заключение давайте выведем важное свойство связанных состояний, которое пригодится нам позже.


Упражнение 3.46*. Покажите, что связанные энергетические собственные состояния точечной частицы с единственной степенью свободы не могут быть вырожденными, если потенциал ограничен снизу.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука