Решение представлено графически на рис. 3.5. Столкнувшись с потенциальной ступенькой, первоначальный волновой пакет расщепляется. Часть его продолжает распространяться и после этого, но с меньшей групповой скоростью, тогда как другая часть отражается от ступеньки и начинает двигаться в обратном направлении. Удивительно, но все это сложное движение проистекает от простого поворота фаз составляющих волн де Бройля!
В качестве заключительного комментария к задаче потенциальной ступеньки отметим, что ненулевая вероятность отражения частицы от потенциальной ступеньки, которая уступает по величине энергии частицы или даже отрицательна [как в случае, описываемом в (3.78b)], представляет собой строго квантовое явление. Любая классическая частица просто «пролетит над» такой потенциальной ступенькой, снизив или увеличив свою скорость, но ни в коем случае не поменяет направление движения на обратное.
Еще более неклассическим является эффект, который мы будем обсуждать сейчас.
Упражнение 3.52.
Рассмотрим потенциал на рис. 3.6a, т. е.и частицу с энергией, удовлетворяющей условию 0 <
a) Каково вырождение энергетических уровней?
b) Найдите решение стационарного уравнения Шрёдингера, которое соответствует волне де Бройля, приходящей слева.
c) Найдите коэффициенты пропускания и отражения для потока вероятности. Равна ли их сумма единице?
Отступление 3.9.
Оптический аналог туннелированияЯвление квантового туннелирования также имеет аналог в оптике. Когда оптическая волна претерпевает полное внутреннее отражение, например на границе стекла и воздуха, с противоположной стороны границы (в воздухе) появляется
Ответ:
Мы видим, что частица, встречающая на своем пути конечный потенциальный барьер, превышающий по высоте кинетическую энергию самой частицы, имеет ненулевую вероятность «туннелировать» сквозь этот барьер (рис. 3.6b). Конечно, это явление не имеет аналогов в классической физике. Но еще более удивительно следующее.
Упражнение 3.53
*. Исследуйте прохождение гауссова волнового пакета сквозь потенциал, показанный на рис. 3.6a, при тех же условиях и допущениях, что в упр. 3.51. Вычислите и постройте графики зависимости координат центров приходящего и прошедшего волновых пакетов (Если вы сделали все верно, у вас должна получиться картина, аналогичная той, что изображена на рис. 3.7. То есть туннелирование происходит
В главе 2 мы уже встречались с квантовым явлением, разрешавшим, на первый взгляд, сверхсветовую связь, но после тщательного анализа выяснили, что это только иллюзия. В данном же случае вывод о сверхсветовой групповой скорости — верный. Однако и здесь он не означает возможности мгновенной передачи сигнала — по следующей причине.
Мы обнаружили, что скорость
В действительности это происходит намного раньше. Из комплексного анализа нам известно, что функция Гаусса