3.7. Несвязанные состояния
Волновые функции несвязанного состояния принимают конечные ненулевые значения при
Простейшим примером несвязанного состояния может служить собственное состояние импульса |
Поскольку, в отличие от связанного состояния, у нас здесь нет граничного условия ψ(
Существование собственного состояния для любого значения энергии, удовлетворяющего (3.74), означает, что энергия в этой области становится непрерывным наблюдаемым (см. отступление 3.7). По этой причине несвязанные состояния иногда называют состояниями
Как мы знаем из разд. 3.2, нормирование для собственных состояний непрерывных наблюдаемых — дело хитрое и неоднозначное. Поэтому, как правило, при анализе волновых функций несвязанных состояний о нормировании мы не думаем.
Упражнение 3.47
§. Найдите волновые функции, соответствующие собственным состояниям гамильтониана с потенциалом(рис. 3.4), соответствующим заданной энергии
Ответ:
любая волновая функция видагде
i
Отступление 3.7.
Энергия: дискретное или непрерывное наблюдаемое?Дискретный или непрерывный характер большинства наблюдаемых, которые мы изучали до сих пор, зависит от их физической природы. Для энергии же он зависит от конкретных физических обстоятельств, о которых идет речь: энергетический спектр дискретен внутри потенциальных ям и непрерывен для несвязанных состояний. Более того, энергетический спектр в одних и тех же условиях может содержать и дискретные, и непрерывные области. Именно так обстоит дело в случае конечной ямы (упр. 3.39), где состояния становятся несвязанными, а спектр энергий — непрерывным для
Можно возразить, что энергия по природе является непрерывной переменной, а форма потенциальной функции определяет лишь, какие значения этой переменной связаны с собственными значениями гамильтониана. Однако по определению (подразд. 1.9.1) именно эта связь устанавливает разрешенное множество значений оператора квантового наблюдаемого. Если энергетические собственные состояния существуют для дискретного набора значений, то и сам оператор энергии становится дискретным наблюдаемым.
Мы знаем, что дискретные и непрерывные наблюдаемые следуют разным правилам нормирования. Удивительным образом энергетические собственные состояния этим правилам подчиняются. Связанные состояния имеют квадратично интегрируемые волновые функции, разрешающие применение нормировочного правила для дискретного спектра ⟨
Еще одна интересная особенность энергетических собственных состояний заключается в том, что, каким бы сложным ни был их спектр, они обязательно образуют базис в гильбертовом пространстве состояний, которые
Видим, что общее решение зависит от четырех параметров, тогда как условия непрерывности порождают только два уравнения (3.77). Нормирование дало бы еще одно дополнительное уравнение; однако мы договорились пренебречь нормированием, а потому можно просто сказать, что любые две волновые функции, различающиеся на постоянный множитель, физически идентичны. Это оставляет нам три параметра и два уравнения; следовательно, для каждого значения энергии существует два линейно независимых набора решений. Найдем их, введя в систему дополнительное уравнение.