Читаем Отличная квантовая механика полностью

Упражнение 3.48§. Решите уравнения (3.77) для B и C, если дополнительное уравнение:

a) D = 0,

b) A = 0.

Ответ:

Разумеется, любая линейная комбинация этих решений также является решением.

Выбор D = 0 или A = 0 в упражнении выше диктуется следующим соображением. Как мы выяснили в разд. 3.4, эволюция волны де Бройля вида eikx с положительным k соответствует распространению в направлении положительного x, а e—ikx — в направлении отрицательного x. Следовательно, случай D = 0 соответствует волне де Бройля с амплитудой A (назовем ее A-волной), идущей слева и встречающей на своем пути барьер. Часть этой волны преодолевает барьер и становится C-волной; другая ее часть отражается в виде B-волны. Случай A = 0 соответствует частице, приходящей справа (D-волна) и порождающей B- и C-волны в прохождении и отражении соответственно.

В этом рассуждении несколько контринтуитивным является, возможно, то, что мы рассматриваем столкновение частицы с барьером как стационарное состояние, т. е. событие бесконечной длительности. Это связано с бесконечной пространственной протяженностью волны де Бройля, о которой мы говорили в разд. 3.2. Неплохой аналогией этого эффекта может служить непрерывный лазерный луч, переходящий из воздуха в стекло и претерпевающий частичное отражение в соответствии с формулами Френеля (отступление 3.8). Подобно ситуации с квантовой частицей, отражение здесь представляет собой не мгновенное событие, но стационарный процесс. Интересно, что если мы сравниваем уравнения Френеля (3.79) для амплитуд поля с уравнениями (3.78) и учитываем обратную пропорциональность оптического волнового числа фазовой скорости, а вследствие этого прямую пропорциональность коэффициенту преломления, то мы обнаруживаем, что эти две системы уравнений почти идентичны!

Отступление 3.8. Формулы Френеля

Рассмотрим оптическую волну амплитуды E0, распространяющуюся в веществе с коэффициентом преломления n0. Падая на границу одного вещества с другим, коэффициент преломления которого n1, волна частично проходит сквозь эту границу, а частично отражается от нее. Формулы Френеля связывают амплитуды прошедшей и отраженной волн (Et и Er соответственно) с E0 в зависимости от угла падения и поляризации. Для нормального падения эти уравнения принимают вид:

Отметим, что для n0 > n1 мы имеем Et > E0. Однако здесь нет нарушения закона сохранения энергии. Дело в том, что интенсивность (плотность потока мощности) оптической волны пропорциональна не только квадрату ее амплитуды, но и коэффициенту преломления:

I = 2ncε0|E|2.

Прошедшая в вещество волна движется с меньшей скоростью, так что поток энергии, переносимый этой волной, также ниже. Сумма интенсивностей отраженной и прошедшей волн

It + Ir = 20(n1|Et|2 + n0|Er|2) = 20n0|E0|2 = I0,

равна интенсивности падающей волны.

Примечательная особенность результата (3.78a) заключается в том, что амплитуда C прошедшей волны де Бройля выше, чем амплитуда A падающей. Аналогично оптическому случаю (отступление 3.8), это не противоречит закону сохранения вещества, поскольку поток вещества пропорционален как плотности вероятности, связанной с волновой функцией, так и фазовой (или групповой) скорости данной волновой функции. Приняв это во внимание, мы обнаружим, что закон сохранения вещества соблюдается в точности.


Упражнение 3.49. Определив поток плотности вероятности волны де Бройля как j = 𝑣ph|ψ(x)|2, найдите потоки плотности вероятности для A-, B- и C-волн в (3.78a). Найдите коэффициенты отражения и пропускания для этих потоков, т. е. jB/jA и jС/jA. Покажите, что их сумма равна единице. Как ведут себя эти коэффициенты при EV0 и E → ∞?


Упражнение 3.50. Выполните упр. 3.47 для энергий ниже V0. Убедитесь, что коэффициент отражения равен единице.

Если вам по-прежнему не нравятся столкновения бесконечной длительности, попробуйте сделать следующее. Начните с гауссова волнового пакета, движущегося на барьер, разложите его на множество волн де Бройля и исследуйте его эволюцию аналогично тому, как это делалось в упр. 3.29.


Упражнение 3.51*. Найдите эволюцию состояния, начальная волновая функция которого представляет собой гауссов пакет, описанный в (3.51) с положительным импульсом p0 и отрицательной координатой центра a в поле потенциала-ступеньки (рис. 3.4). Считайте, что:

• |a| ≫ d, поэтому волновой пакет первоначально целиком находится слева от ступеньки;

• d2 ≫ ℏt/M, поэтому расширением волнового пакета (упр. 3.29) можно пренебречь;

• начальная средняя энергия частицы больше, чем V0;

• неопределенность импульса волнового пакета ℏ/2D мала по сравнению со средними импульсами ℏk0 и ℏk1 падающей и прошедшей волн де Бройля.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука