Как альтернативный вариант мы можем выбрать в качестве гильбертовых пространств два диагональных типа поляризации; в этом случае диагонально поляризованный фотон представляет собой разделимое состояние, тогда как горизонтально поляризованный — запутанное.
Таким образом, аппарат первичного квантования более компактен и удобен, когда
Подводя итог, скажем, что, хотя оба подхода имеют право на существование и могут использоваться для работы с физическими явлениями, один из них может оказаться более практичным в зависимости от задачи, которую мы пытаемся решить.
Полезно сравнить волновые функции фоковских состояний с волновыми функциями энергетических собственных состояний конечной потенциальной ямы (см. рис. 3.2). В обоих случаях они проявляют осциллирующее поведение внутри ямы и экспоненциально убывают вне ее. Число пересечений оси абсцисс равно номеру энергетического уровня. Разница в том, что энергетические уровни эквидистантны для гармонического осциллятора, но не для прямоугольной ямы. Далее, каждая собственная волновая функция ямы определяется кусочно [см. (3.66) и (3.67)], тогда как для потенциала гармонического осциллятора она представляет собой единую элементарную функцию.
Упражнение 3.66.
Вычислите матрицы операторов координаты и импульса в фоковском базисе.Подсказка:
вместо того чтобы интегрировать волновые функции, удобнее воспользоваться уравнениями (3.100) и (3.104).Упражнение 3.67.
Для произвольного |Ответ:
Мы видим, что произведение неопределенностей координаты и импульса увеличивается с ростом энергии. Вакуумное состояние — единственное фоковское состояние, для которого это произведение достигает минимума (3.95).
Упражнение 3.68.
Рассмотрим шрёдингерову эволюцию |ψ(Сами фоковские состояния стационарны, так что средние значения координаты и импульса у них не меняются во времени. В этом смысле они чрезвычайно неклассичны и не стыкуются с привычным нам представлением о том, что шарик на пружинке должен колебаться (если не находится в покое, т. е. в состоянии с минимальной энергией). А во всех других состояниях средние значения координаты и импульса действительно меняются. Примечательно, что в
Отступление 3.12.
Измерение координаты гармонического осциллятора: экспериментВ то время, когда ведется работа над этой рукописью, физикам еще не удается приготовлять и измерять произвольные квантовые состояния механических гармонических осцилляторов. Они гораздо лучше справляются с их оптической реализацией. В частности, исследователи могут приготовить некоторые из низких числовых состояний и их суперпозиций с высокой степенью достоверности.
В оптической реализации гармонического осциллятора координата и импульс соответствуют абсолютным величинам электрического поля в электромагнитной волне в определенных фазах. Фазочувствительные измерения электромагнитного поля выполняются с использованием так называемого
На представленном здесь рисунке показаны экспериментальные данные множественных измерений координаты в вакуумном состоянии (вверху) и одноквантовом состоянии (внизу) оптической волны. Вакуумное состояние получается простым блокированием света; объявленный единичный фотон приготовляется с использованием параметрического рассеяния (отступление 1.6). Теоретически можно было бы ожидать, что гистограммы (справа) необработанных экспериментальных данных (слева) должны соответствовать плотностям вероятности pr0,1
= |ψ0,1 (