Читаем Отличная квантовая механика полностью

Если мы попытаемся примирить упомянутые два подхода и найти для них общую интуитивно понятную основу, то одним из препятствий, с которыми мы неизбежно столкнемся, станет вопрос о том, как классическая и квантовая физика работают с эволюцией во времени. В классической картине эволюционируют наблюдаемые: например, координата движущейся частицы. В квантовом мире, напротив, наблюдаемые — такие как оператор координаты — постоянны; эволюцию же связывают с состоянием системы |ψ(t)⟩. В этом разделе мы попробуем сделать связь между двумя мирами более прозрачной, для чего разберем альтернативный аппарат квантовой теории, в которой состояния постоянны, а эволюционируют наблюдаемые.

3.9.1. Эволюция оператора

Предположим, нам нужно найти среднее значение некоторого наблюдаемого Â в квантовом состоянии |ψ⟩, которое эволюционирует под действием гамильтониана Ĥ. Обычный подход (разд. 1.10) предписывает вычислять эволюцию интересующего нас состояния согласно — унитарный оператор эволюции[87]. Тогда квантовое среднее значение равно

Этот подход известен как представление Шрёдингера квантовой эволюции. Альтернативой ему является представление Гейзенберга, согласно которому считается, что операторы эволюционируют в соответствии с

тогда как все квантовые состояния остаются неизменными: |ψ(t)⟩ = |ψ(0)⟩. В таком случае среднее значение Â равно

Предполагается, что в момент времени t = 0 состояния и операторы в обоих представлениях одинаковы.


Упражнение 3.77. Покажите, что квантовые средние значения оператора, рассчитанные в представлениях Шрёдингера и Гейзенберга [(3.126) и (3.128) соответственно], одинаковы.


Упражнение 3.78. Для представления Гейзенберга покажите, что эволюция оператора может быть записана в виде (иногда называемом уравнением Гейзенберга)

Чтобы понять, как представление Гейзенберга помогает примирить классический и квантовый подходы, рассмотрим пример.


Упражнение 3.79. Напишите уравнения движения Гейзенберга (3.129) для координаты и импульса гармонического осциллятора, принимая гамильтониан равным (3.83).

Ответ:

Мы видим — и это весьма примечательно, — что эволюция наблюдаемых координаты и импульса гармонического осциллятора в представлении Гейзенберга идентична классической (отступление 3.10). Действительно, уравнение (3.130a) суть определение импульса как произведения массы и скорости, тогда как уравнение (3.130b) есть второй закон движения Ньютона, поскольку сила пружины составляет F = —κx.

Соответственно эквивалентны классическим и решения этих уравнений, помимо крышечек над обозначениями наблюдаемых:

Данная аналогия квантового и классического может показаться чисто формальной, так как можно сказать, что координата и импульс в приведенных выше уравнениях — это операторы, абстрактные понятия линейной алгебры. Но в действительности между тем и другим существует непосредственная практическая связь. Чтобы ее увидеть, мы можем «вложить» обе части уравнений (3.131) между символами ⟨ψ| и |ψ⟩, связанными с произвольным квантовым состоянием. Тогда эти уравнения принимают вид

Теперь вместо абстрактных операторов у нас есть измеряемые физические величины: средняя координата и средний импульс — и они действительно ведут себя идентично своим классическим аналогам в любом квантовом состоянии. Этот факт воспроизводит наш более ранний результат (3.115), полученный с использованием представления Шрёдингера.

Является ли такая согласованность с классическим поведением уникальным свойством гармонического осциллятора или общим свойством всех механических систем? Приведу простой аргумент в пользу последнего.


Упражнение 3.80. Для шрёдингеровой эволюции состояния точечной частицы под действием гамильтониана (3.55) покажите, что

где штрих обозначает производную.

Подсказка: разложите V (x) в степенной ряд.

Уравнение (3.133b) опять же соответствует второму закону Ньютона, потому что в классической механике потенциальная энергия консервативной силы связана с самой этой силой согласно выражению[88]

F (x) = —V' (x). (3.134)

Соотношения (3.133) можно сделать более удобными, если взять средние значения координаты и импульса частицы в произвольном состоянии. Тогда они примут вид

Данные соотношения получили известность как теорема Эренфеста. Важно, что она имеет дело с математическими ожиданиями наблюдаемых, а не непосредственно с состояниями или операторами. А поскольку эти математические ожидания одинаковы в обоих представлениях — и Шрёдингера, и Гейзенберга (упр. 3.77), — теорема Эренфеста тоже верна в обоих представлениях.

Замечу еще, что, как мы знаем из механики, классический вид уравнений (3.133) является частным случаем гамильтоновых уравнений движения:

В квантовом мире эти уравнения заменяются на уравнение Гейзенберга.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука