Если мы попытаемся примирить упомянутые два подхода и найти для них общую интуитивно понятную основу, то одним из препятствий, с которыми мы неизбежно столкнемся, станет вопрос о том, как классическая и квантовая физика работают с эволюцией во времени. В классической картине эволюционируют наблюдаемые: например, координата движущейся частицы. В квантовом мире, напротив, наблюдаемые — такие как оператор координаты
Предположим, нам нужно найти среднее значение некоторого наблюдаемого
Этот подход известен как
тогда как все квантовые состояния остаются неизменными: |ψ(
Предполагается, что в момент времени
Упражнение 3.77.
Покажите, что квантовые средние значения оператора, рассчитанные в представлениях Шрёдингера и Гейзенберга [(3.126) и (3.128) соответственно], одинаковы.Упражнение 3.78.
Для представления Гейзенберга покажите, что эволюция оператора может быть записана в виде (иногда называемомЧтобы понять, как представление Гейзенберга помогает примирить классический и квантовый подходы, рассмотрим пример.
Упражнение 3.79.
Напишите уравнения движения Гейзенберга (3.129) для координаты и импульса гармонического осциллятора, принимая гамильтониан равным (3.83).Ответ:
Мы видим — и это весьма примечательно, — что эволюция наблюдаемых координаты и импульса гармонического осциллятора в представлении Гейзенберга идентична классической (отступление 3.10). Действительно, уравнение (3.130
Соответственно эквивалентны классическим и решения этих уравнений, помимо крышечек над обозначениями наблюдаемых:
Данная аналогия квантового и классического может показаться чисто формальной, так как можно сказать, что координата и импульс в приведенных выше уравнениях — это операторы, абстрактные понятия линейной алгебры. Но в действительности между тем и другим существует непосредственная практическая связь. Чтобы ее увидеть, мы можем «вложить» обе части уравнений (3.131) между символами ⟨ψ| и |ψ⟩, связанными с произвольным квантовым состоянием. Тогда эти уравнения принимают вид
Теперь вместо абстрактных операторов у нас есть измеряемые физические величины: средняя координата и средний импульс — и они действительно ведут себя идентично своим классическим аналогам в любом квантовом состоянии. Этот факт воспроизводит наш более ранний результат (3.115), полученный с использованием представления Шрёдингера.
Является ли такая согласованность с классическим поведением уникальным свойством гармонического осциллятора или общим свойством всех механических систем? Приведу простой аргумент в пользу последнего.
Упражнение 3.80.
Для шрёдингеровой эволюции состояния точечной частицы под действием гамильтониана (3.55) покажите, чтогде штрих обозначает производную.
Подсказка:
разложитеУравнение (3.133b) опять же соответствует второму закону Ньютона, потому что в классической механике потенциальная энергия консервативной силы связана с самой этой силой согласно выражению[88]
Соотношения (3.133) можно сделать более удобными, если взять средние значения координаты и импульса частицы в произвольном состоянии. Тогда они примут вид
Данные соотношения получили известность как
Замечу еще, что, как мы знаем из механики, классический вид уравнений (3.133) является частным случаем гамильтоновых уравнений движения:
В квантовом мире эти уравнения заменяются на уравнение Гейзенберга.