Мы можем видеть, что если для вакуумного состояния теория и эксперимент согласуются почти идеально, то данные для однофотонного состояния лучше всего соотносятся со смешанным состоянием единичного фотона с вероятностью 0,62 и вакуума с вероятностью 0,38. Дело в том, что создать идеальное однофотонное состояние невозможно. Достоверность наблюдаемого нами состояния неизбежно снижается из-за потерь на оптическом пути, неидеальной эффективности регистрации и других причин.
Когерентное состояние является наиболее точным приближением классического гармонического колебательного движения. Мы уже видели, что средние значения координаты и импульса в любом квантовом состоянии (кроме фоковских) ведут себя во времени точно так же, как и у классического шарика на пружинке. Особенность когерентного состояния в том, что в то время, как амплитуда таких колебаний может быть сколь угодно высокой, неопределенности координаты и импульса остаются такими же низкими, как в вакуумном состоянии. Из-за поведения, схожего с классическим, когерентные состояния часто наблюдаются в природе, причем не только в механике, но и в других «воплощениях» гармонического осциллятора, таких как световое поле в лазерном импульсе.
Поскольку
Мы начнем изучение когерентного состояния с его волновой функции. Она может быть определена путем решения (3.116) как дифференциального уравнения в координатном базисе, аналогично упр. 3.64. Во избежание этих довольно утомительных расчетов в следующем упражнении я просто сразу выпишу ответ и попрошу вас его проверить. Альтернативный способ расчета волновой функции когерентного состояния мы разберем в разд. 3.10.
Упражнение 3.69.
Для когерентного состояния |α⟩ покажите, что его волновые функции в координатном и импульсном базисах задаются так:Убедитесь, что эти волновые функции нормированы. Покажите, что математические ожидания и дисперсии координаты и импульса в когерентном состоянии |α⟩ равны
⟨
и ⟨Δ
соответственно.
Волновая функция когерентного состояния представляет собой гауссов волновой пакет. Для α = 0 когерентное состояние становится вакуумным, что очевидно из сравнения уравнений (3.105) и (3.116) (рис. 3.10a). Для действительного α форма волновой функции идентична ее форме для вакуумного состояния, сдвинутой на
Мы видим, что для любого комплексного α существует когерентное состояние и что каждое такое состояние нормируется согласно ⟨α|α⟩ = 1. Может показаться, что это противоречит нашим недавним рассуждениям о необходимости нормировать собственные состояния непрерывных квантовых наблюдаемых через дельта-функцию Дирака, как в уравнениях (3.1). Причина, по которой это правило не применимо к когерентными состояниям, состоит в том, что оператор уничтожения — не эрмитово наблюдаемое. По этой же причине когерентные состояния, связанные с различными значениями α, не ортогональны (см. упр. 3.75).
В соответствии с уравнением (3.120) любое когерентное состояние имеет аналогично вакуумному минимально возможную неопределенность координаты — импульса (3.95).
В фазовом пространстве когерентное состояние можно изобразить в виде окружности с центром в точке
Глобальные фазовые множители
Подчеркну роль фазы Arg α когерентного состояния. Эта фаза представляет собой угол радиус-вектора, указывающего на (⟨
Теперь найдем шрёдингерову эволюцию когерентного состояния во времени. С этой целью мы сначала разложим его в энергетическом собственном базисе.