Упражнение 3.70.
Найдите разложение когерентного состояния |α⟩ в фоковском базисе.Подсказка:
возьмите некоторое разложениеи примените к нему определение (3.116) когерентного состояния.
Ответ:
с точностью до общего фазового множителяЗдесь мы опять вводим соглашение об общей фазе, согласно которому общий фазовый множитель в уравнении (3.122) равен единице; т. е. мы объявляем ⟨
Упражнение 3.71.
Вычислите скалярное произведение ⟨0 |α⟩ для произвольного α в координатномтном и фоковском базисах. Убедитесь, что результаты одинаковы.Если измерить энергию когерентного состояния, то вероятности возможных результатов распределятся в соответствии с
Разумеется, это знаменитое распределение Пуассона (см. разд. Б.3). Из его свойств (упр. Б.15) мы видим, что и среднее значение, и дисперсия фоковского числа в когерентном состоянии равны
⟨
Это означает, например, что в последовательности лазерных импульсов с
На самом деле нам совершенно необязательно знать свойства распределения Пуассона, чтобы получить последний результат. Он следует непосредственно из определения когерентного состояния.
Упражнение 3.72.
Вычислите среднее значение и дисперсию оператора гамильтониана (3.102) в когерентном состоянии, пользуясь свойствами операторов рождения и уничтожения, и убедитесь, что ваш результат согласуется с (3.124).Упражнение 3.73.
Покажите, что действие оператора эволюцииУпражнение 3.74.
Вычислите квантовые средние значения:a) операторов рождения и уничтожения;
b) операторов координаты и импульса в когерентном состоянии в зависимости от времени, используя (3.119) и (3.125). Убедитесь, что ваши результаты согласуются с (3.114) и (3.115).
Результат упр. 3.73 весьма замечателен. Если не принимать во внимание нефизичный квантовый фазовый множитель, когерентное состояние эволюционирует в другое когерентное состояние с той же амплитудой, но иной когерентной фазой, как показано на рис. 3.11. Это означает, что неопределенности координаты и импульса остаются постоянными и равны соответствующим величинам вакуумного состояния.
Данный результат вновь иллюстрирует разницу между квантовой и когерентной фазами.
Наконец, упр. 3.73 выявляет классическую аналогию когерентных состояний с большой амплитудой. Если амплитуда когерентного состояния макроскопична, то относительные неопределенности пренебрежимо малы, так что когерентное состояние хорошо аппроксимируется классическими колебаниями. Напротив, для микроскопических амплитуд неопределенности играют значительную роль, и классическое приближение не годится.
Упражнение 3.75.
Покажите, чтоЭтот результат позволяет еще раз вспомнить уже сказанное, а именно — когерентные состояния, связанные с разными значениями α, не ортонормальны. Поскольку оператор уничтожения не является эрмитовым, спектральная теорема (упр. A.60), которая гласит, что множество собственных состояний эрмитова оператора представляет собой ортонормальный базис, к нему не применима. Когерентные состояния образуют остовный набор, но не являются ортогональными.
Упражнение 3.76.
Когерентные состояния суть собственные состояния оператора уничтожения. Существуют ли их аналоги — собственные состояния оператора рождения — и если да, то каково их разложение в фоковском базисе?3.9. Представление Гейзенберга
Нам уже не раз встречались случаи, в которых квантовая механика предсказывала поведение, ожидаемое классически. Примеры таких ситуаций — эволюция средних значений координаты и импульса в свободном пространстве или в потенциальном поле гармонического осциллятора. Подобные наблюдения, в принципе, неудивительны, поскольку мы знаем, что классическая картина соответствует макроскопическому пределу квантовой. Но в то же время теоретические и математические методы этих двух подходов настолько различны, что, даже когда они действительно приводят к сходным результатам, разобраться, что за этим сходством стоит, бывает трудно.