Читаем Отличная квантовая механика полностью

Возвращаясь еще раз к примеру 𝑓(x, t) = 2x, видим, что (3.154) принимает вид Функция плотности вероятности растягивается вдоль оси x и приобретает нормировочный множитель, равный чего и следовало ожидать интуитивно.

Хотя представление Гейзенберга не предсказывает эволюцию комплексной фазы волновой функции, его можно использовать для расчета зависимости от времени абсолютного значения этой функции — и, следовательно, экспериментально измеряемой плотности вероятности, связанной с наблюдаемым В общем случае представление Гейзенберга не менее мощный инструмент предсказания экспериментальных результатов, чем представление Шрёдингера; выбор того или иного представления для конкретного расчета диктуется соображениями простоты и зачастую личными предпочтениями исследователя.

3.10. Преобразования состояний гармонического осциллятора

Рассмотрим теперь несколько операторов, которые могут быть применены к квантовым состояниям гармонического осциллятора и особенно важны в контексте квантовой оптики. Мы изучим эти операторы как в представлении Шрёдингера, так и в представлении Гейзенберга, приобретая таким образом дополнительные навыки и больше узнавая о взаимоотношениях между этими представлениями.

В данном разделе мы не будем считать априори, что система находится под действием гамильтониана гармонического осциллятора. Отсылка к гармоническому осциллятору будет ограничена использованием перемасштабированных наблюдаемых координаты и импульса, введенных в разд. 3.8, операторов рождения и уничтожения, а также состояний и соотношений, выработанных в их контексте. Эти соотношения (за исключением тех, что относятся к энергиям и эволюции состояний) остаются верными вне зависимости от гамильтониана и корректны для любых значений κ, M и ω, используемых для перемасштабирования.

3.10.1. Когерентное состояние как смещенное вакуумное

Для начала покажем, что когерентное состояние может быть записано как смещенное вакуумное, и воспроизведем некоторые результаты подразд. 3.8.3 более простым способом.


Упражнение 3.100. Покажите, что оператор фазово-пространственного смещения в перемасштабированных единицах соответствует следующим преобразованиям в представлении Гейзенберга (рис. 3.13a):

Подсказка: введите фиктивный гамильтониан где ω = 1/t, и исследуйте эволюцию операторов под действием этого гамильтониана за время t.


Упражнение 3.101. Убедитесь, что вектор где |0⟩ есть вакуумное состояние, является собственным вектором оператора уничтожения с собственным значением Убедитесь, что норма этого вектора равна единице.

Сравнивая полученный результат с определением когерентного состояния (подразд. 3.8.3), мы видим, что

Обратите внимание — мы используем знак пропорциональности, а не равенства: когерентные состояния |α⟩ следуют определенному фазовому соглашению, и мы не можем пока быть уверены, что правая сторона уравнения (3.156) имеет ту же фазу. Мы определим эту фазу в следующем упражнении.


Упражнение 3.102*

a) Покажите, что оператор смещения можно переписать как

Подсказка: используйте (3.100).

b) Преобразуйте результат пункта a) следующим образом:

Подсказка: используйте формулу Бейкера — Хаусдорфа — Кэмпбелла (A.54).

c) Покажите, что правую часть (3.156) можно переписать как


Упражнение 3.103. Выразите правую часть (3.159) в базисе Фока посредством разложения экспоненты в степенной ряд.

Мы видим, что правая часть уравнения (3.156) имеет в точности то же фоковское разложение (3.122), что и когерентное состояние. Это означает, что посредством смещения вакуума мы получаем состояние, которое не просто пропорционально, но и равно когерентному состоянию:

3.10.2. Фазовый сдвиг

Эволюцию под действием гамильтониана гармонического осциллятора (3.96) можно переписать как

В упр. 3.73 мы выяснили, что эта эволюция преобразует когерентное состояние |α⟩ в другое когерентное состояние, Добавляется когерентный фазовый сдвиг на ωt и, кроме того, квантовый фазовый множитель который возникает из свободного члена гамильтониана. Удобно ввести оператор фазового сдвига

где ϕ — действительное число. Действие данного оператора эквивалентно эволюции (3.161) за время t = ϕ/ω, но не содержит вышеупомянутого дополнительного квантового фазового множителя.


Упражнение 3.104. Покажите, что:

Уравнение (3.163) показывает, как работает когерентный фазовый сдвиг: он применяет квантовый фазовый множитель exp (—iϕn) |n⟩ к каждому фоковскому компоненту |n⟩ состояния. Действуя совместно в рамках суперпозиции фоковских состояний, эти квантовые фазовые сдвиги (каждый из которых по отдельности нефизичен) приводят к физически измеряемому когерентному фазовому сдвигу.


Упражнение 3.105. Покажите, что фазовый сдвиг преобразует операторы гармонического осциллятора следующим образом (рис. 3.13b):

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука