Читаем Отличная квантовая механика полностью

Подсказка: по аналогии с упр. 3.100 введите фиктивный гамильтониан, такой, чтобы операторные преобразования левых частей приведенных уравнений можно было интерпретировать как их эволюцию под действием этого гамильтониана в представлении Гейзенберга.

Мы видим, что применение оператора фазового сдвига (или эволюции гармонического осциллятора) ведет к повороту фазового пространства по часовой стрелке на угол ϕ = ωt вокруг начала координат. Это повторяет полученный нами ранее результат (3.115) для эволюции средних значений координаты и импульса под действием гамильтониана гармонического осциллятора. Вспомним также, что мы получили последние два из приведенных выше уравнений, в неперемасштабированных переменных, когда вводили представление Гейзенберга в подразд. 3.9.1.

3.10.3. Сжатие

Оператор одноосцилляторного (одномодового) сжатия (squeezing) задается формулой

где параметр сжатия r — действительное число.


Упражнение 3.106§. Покажите, что оператор сжатия унитарен и

Ŝ(r) = Ŝ−1(r) = Ŝ(-r).

Подсказка: см. упр. 3.87.


Упражнение 3.107. Убедитесь, что оператор сжатия эквивалентен оператору эволюции под действием гамильтониана

за время t при r = γt. Покажите, что эта эволюция в представлении Гейзенберга преобразует операторы следующим образом:


Упражнение 3.108. Пусть для состояния |ψ⟩ среднеквадратичные неопределенности координаты и импульса равны соответственно. Покажите, что среднеквадратичные неопределенности этих же наблюдаемых для состояния Ŝ(r)|ψ⟩ равны и соответственно.

Данные результаты оправдывают название «оператор сжатия». Этот оператор «сжимает» координату и при этом «растягивает» импульс в er раз (рис. 3.13c). Такое одновременное противоположное действие на эти два наблюдаемых гарантирует, что произведение неопределенностей координаты и импульса останется неизменным, а потому принцип неопределенности не будет нарушен. В частности, когда оператор сжатия применяется к вакуумному или когерентному состоянию, произведение неопределенностей в результирующем состоянии соответствует минимальному значению (3.95), допускаемому теорией.

Применив оператор сжатия к вакуумному состоянию, мы получаем сжатое вакуумное состояние. Его замечательной особенностью является то, что амплитуда его нулевых колебаний по координате (при r > 0) или импульсу (при r < 0) меньше, чем эти же параметры у вакуумного состояния — состояния с минимальной возможной энергией, содержащее ноль квантов энергии. В оптической реализации гармонического осциллятора нулевые колебания проявляются в виде случайных флуктуаций электрического поля вокруг нуля. Так вот, в сжатом вакуумном состоянии этот шум ниже, чем при полностью выключенном свете!

А теперь зададим себе вопрос, как выглядит волновая функция сжатого вакуумного состояния Ŝ(r)|0⟩. Прямое вычисление этой функции в представлении Шрёдингера весьма трудоемко. Однако, принимая во внимание результаты нашего изучения представления Гейзенберга, несложно догадаться, что результат операции сжатия заключается в перемасштабировании по оси абсцисс и перенормировании волновой функции вакуумного состояния (3.107a):


Упражнение 3.109. Убедитесь, что волновые функции (3.175):

a) нормированы;

b) согласуются с (3.154).

Проверка, которую мы только что проделали, ничего не говорит нам о том, правильно ли мы угадали комплексную фазу волновых функций. Чтобы проверить, давайте просто подставим их в нестационарное уравнение Шрёдингера и убедимся в его непротиворечивости.


Упражнение 3.110. Убедитесь, что волновые функции (3.175) удовлетворяют уравнению Шрёдингера для гамильтониана (3.170) при r = γt.

Двухосцилляторный (двумодовый) оператор сжатия, действующий на два осциллятора, обозначаемые индексами A и B, задается формулой

где r — действительное число.


Упражнение 3.111

a) Убедитесь, что двумодовый оператор сжатия можно связать со следующим фиктивным гамильтонианом

b) Покажите, что двумодовое сжатие в представлении Гейзенберга соответствует следующему преобразованию операторов[91]:

c) Найдите математические ожидания и неопределенности наблюдаемых в двумодовом сжатом вакуумном состоянии Ŝ2(r)|00⟩.

Ответ: все математические ожидания равны нулю. Среднеквадратичные отклонения равны


Упражнение 3.112. Путем подставления в нестационарное уравнение Шрёдингера убедитесь, что нормализованные волновые функции двумодового сжатого вакуумного состояния в базисах координаты и времени равны (рис. 3.14)


Упражнение 3.113. У наблюдателей Алисы и Боба есть две частицы в двухосцилляторном сжатом состоянии (3.186a).

a) Предположим, Алиса измеряет координату своей частицы и получает результат XA. Какой станет волновая функция частицы Боба в координатном базисе? Чему равна при этом ее неопределенность по координате

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука