Читаем Отличная квантовая механика полностью

В оптической реализации гармонического осциллятора сжатые состояния могут быть получены с использованием (вы уже догадались) параметрического рассеяния (отступление 1.6). Как мы знаем, одна из главных особенностей этого явления заключается в том, что фотоны генерируются парами — в точности как в сжатых вакуумных состояниях. В зависимости от того, одномодовый или двумодовый сжатый вакуум мы хотим получить, используются различные конфигурации параметрического рассеяния: оно либо вырождено, если два фотона выпускаются в одной и той же оптической моде, либо невырождено, если фотоны в паре распределены по двум оптическим каналам.

Невырожденная конфигурация выглядит так же, как описывалось в контексте источников объявленных фотонов (отступление 1.6) и источников запутанных пар (отступление 2.1). Однако эти описания делались в приближении слабой накачки, так что вероятность генерации двух или более пар фотонов одновременно пренебрежимо мала. Отказавшись от этого предположения, мы получаем более общий случай: сжатие.

Мы видим, что ряд (3.193) представляет собой геометрическую прогрессию: амплитуда каждого последующего члена равна амплитуде предыдущего, домноженной на th r. Именно этого и следует ожидать от параметрического рассеяния: поскольку это спонтанный процесс, вероятность появления n пар равна вероятности появления единичной пары, возведенной в n-ю степень. Если такая вероятность значима, то фактор сжатия e—r (см. упр. 3.108) значительно отличается от единицы. В случае одномодового сжатия (3.191) соотношение геометрической прогрессии осложняется из-за интерференции между фотонами пары, выпущенной в одну и ту же моду.

Если сжатое состояние возникло, как его можно обнаружить? Один из способов убедиться в наличии двумодового сжатия состоит в том, чтобы измерить число фотонов в двух эмиссионных модах и убедиться, что число их там и там коррелирует. Однако этот метод не позволяет установить фазовое соотношение между компонентами фотонной пары и, более того, не годится для обнаружения одномодового сжатия. Гораздо информативнее будет произвести множественные измерения координаты и импульса с использованием гомодинного детектора (отступление 3.12) и убедиться в том, что их статистика ведет себя ожидаемым образом.


Упражнение 3.117*. Покажите, что

выполнив следующие шаги.

a) Вычислите перекрытие Ŝ2(r)|0,0⟩ и тензорного произведения |α, α⟩ одинаковых когерентных состояний в осцилляторах Алисы и Боба:

b) Разложив когерентные состояния из левой части в фоковском базисе и оставив только члены с равным числом фотонов, покажите, что

c) Разложите экспоненту в правой части приведенного уравнения в степенной ряд по α и получите уравнение (3.193).


Упражнение 3.118*. Найдите среднее значение и дисперсию числа квантов энергии:

a) в состоянии одномодового сжатого вакуума;

b) в состоянии двумодового сжатого вакуума (в каждом канале).

Подсказка: найдите квадрат нормы обоих состояний из уравнений (3.191) и (3.195) и вычислите производную по th r.

Ответ:

a) ⟨m⟩ = sh2r; ⟨Δm2⟩ = 2sh2r + 2sh4r;

b) ⟨n⟩ = sh2r; ⟨Δn2⟩ = sh2r + sh4r.

3.11. Задачи

Задача 3.1. Некоторое состояние характеризуется волновой функцией

a) Найдите нормирующий множитель A.

b) Найдите волновую функцию в импульсном базисе.

c) Проверьте принцип неопределенности: ⟨Δp2⟩⟨Δx2⟩ ≥ ℏ2/4.

Подсказка:

Задача 3.2. Найдите элемент матрицы ⟨p|Â|p'⟩, если оператор Â есть функция координаты:

Задача 3.3. Для энергетических собственных состояний из упр. 3.40 найдите неопределенности координаты и импульса и убедитесь в том, что принцип неопределенности выполняется.

Задача 3.4. Рассмотрите состояние:

где есть норма, в потенциальном поле из упр. 3.40. Найдите спектр энергий этого состояния, т. е. вероятности prn наблюдения каждого из энергетических собственных состояний. Покажите, что в сумме эти вероятности дают единицу.

Задача 3.5. Рассмотрите частицу массой M, начальное состояние которой характеризуется волновой функцией ψ(x), в бесконечно глубокой потенциальной яме ширины a. Покажите, что эволюция под действием уравнения Шрёдингера восстановит начальное состояние (возможно, с фазовым множителем) через время t = 4Ma2/πℏ.

Задача 3.6. Для конечной потенциальной ямы (3.65):

a) аналитически найдите приближенные поправки к первым двум энергетическим уровням бесконечно глубокой потенциальной ямы (упр. 3.40) при замене ее конечной ямой с V0E1, где E1 задается уравнением (3.69);

b) найдите численно первые два энергетических собственных значения для k0a = 10. Согласуется ли ваш результат с результатом части (a)?

Задача 3.7. Частица находится в основном состоянии бесконечно глубокой потенциальной ямы шириной a. Яма внезапно становится в два раза шире (симметрично в обе стороны). Какова вероятность, что частица останется в основном состоянии нового потенциала?

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука