Читаем Отличная квантовая механика полностью

Упражнение 4.4*. Найдите энергетические собственные значения и их степени вырождения для трехмерного изотропного гармонического осциллятора с  где r2 = x2 + y2 + z2.

В общем случае, однако, потенциал не есть сумма потенциалов для отдельных координат. Это приводит к тому, что эволюция под действием гамильтониана (4.7), как правило, запутывает состояния, которые первоначально были тензорными произведениями векторов в 𝕍x,𝕍y и 𝕍z. Собственные состояния гамильтониана также будут запутаны по отношению к трем пространствам-компонентам. Чтобы проиллюстрировать это, запишем стационарное уравнение Шрёдингера для трехмерного движения в координатном базисе.


Упражнение 4.5. Покажите, что в координатном базисе:

a) действие одного из компонентов оператора импульса на произвольное состояние |ψ⟩ в координатном представлении есть

b) действие вектора оператора импульса в координатном базисе есть (иными словами, в координатном базисе

c) стационарное уравнение Шрёдингера принимает вид

Мы получили трехмерное дифференциальное уравнение в частных производных. Его решение, как правило, не может быть записано как произведение функций отдельных декартовых переменных — так проявляется упомянутая выше запутанность.

Решение уравнения (4.9) в общем виде весьма затруднительно. К счастью, физические задачи, требующие подобных усилий, встречаются относительно редко. Обычно потенциал обладает какими-нибудь симметриями, которые облегчают решение. Мы разберем один такой случай.

4.2. Центрально-симметричный потенциал

4.2.1. Сферические координаты

Рассмотрим вращательно-инвариантный потенциал где есть длина радиус-вектора в точку (x,y,z), — такой как потенциал электрического поля атомного ядра, в котором движутся электроны. Если мы научимся решать стационарное уравнение Шрёдингера для этого потенциала, то сможем и вычислять волновые функции стационарного состояния электрона в атоме.

Как бы мы рассчитывали классическое движение частицы во вращательно-инвариантном потенциале? Скорее всего, рассмотрели бы две степени свободы такого движения — радиальную и угловую, и отметили, что они в значительной степени отвязаны друг от друга, потому что момент импульса сохраняется. Подобная отвязанность позволила бы нам записать и решить уравнения движения для каждой степени свободы отдельно. Математически это означает, что использование сферических, а не декартовых координат значительно упростило бы вычисления.

В квантовом случае мы применим аналогичную стратегию. Начнем с представления 𝕍3D в виде тензорного произведения гильбертовых пространств, связанных со сферическими координатами:

𝕍3D = 𝕍r ⊗ 𝕍θ ⊗ 𝕍φ (4.10)

при (рис. 4.1)

x = r sin θ cos φ; (4.11a)

y = r sin θ sin φ; (4.11b)

z = r cos θ. (4.11c)

Соответственно, волновая функция становится функцией от r, θ и φ. Преимущество перехода к сферическим координатам состоит в том, что центрально-симметричный потенциал при этом станет оператором только в 𝕍r. За это, однако, приходится расплачиваться кинетической энергией. В отличие от декартовой системы координат здесь она не может быть представлена как сумма слагаемых, каждое из которых локально в пределах своего компонента гильбертова пространства. Тем не менее использование такого подхода дает определенное преимущество, которое мы увидим еще до конца текущего раздела.

Чтобы двигаться дальше, нам необходимо ввести правило вычисления скалярных произведений двух состояний, волновые функции которых выражены в сферических координатах. Скалярное произведение в координатном базисе задается уравнением (4.5). Чтобы перевести переменные интегрирования из декартовых координат в сферические, мы должны включить в уравнение якобиан:

Для скалярного произведения (4.5) мы, таким образом, должны записать


Упражнение 4.6. Докажите второе равенство в уравнении (4.12).

Традиционно принято объединять два гильбертовых пространства, связанных с угловым движением, в единое пространство тензорных произведений 𝕐 = 𝕍θ ⊗ 𝕍φ, так что

𝕍3D = 𝕍θr ⊗ 𝕐. (4.14)

Отступление 4.1. Нормирование в гильбертовых пространствах в сферических координатах

Дополнительный множитель r2sinθ в уравнении (4.13) может вызвать вопросы. Мы вывели соотношение (3.6) и его многомерный аналог (4.5) из фундаментальных принципов, поэтому, казалось бы, скалярное произведение двух состояний, выраженных в любом непрерывном базисе, должно иметь одинаковый вид, без всяких дополнительных множителей. Объяснение заключается в том, что уравнение (3.6) было выведено с использованием правила нормирования (3.1a) для координатных собственных состояний. Собственные состояния трех сферических наблюдаемых не обязаны следовать этому правилу, поскольку обладают другими свойствами. Например, сферические координаты могут принимать значения из ограниченных диапазонов: r ∈ [0,+∞), θ ∈ [0,π], φ ∈ [0,2π), в отличие от координаты x, значения которой лежат в диапазоне от —∞ до +∞.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука