Мы видим, что выражения (4.25) для момента импульса в сферических координатах зависят только от θ и φ, но не от r
, тогда как для оператора все наоборот. Это подтверждает наши интуитивные предположения: первый оператор в левой части стационарного уравнения Шрёдингера (4.23) локален в пространстве 𝕍r, а второй — в пространстве 𝕐 Воспользуемся этим фактом, чтобы решить уравнение Шрёдингера.В упражнении 4.13 мы обнаружили, что эрмитов оператор коммутирует с гамильтонианом. Как нам известно (упр. 1.36), два коммутирующих эрмитовых оператора имеют общий собственный базис, в котором оба они принимают диагональный вид. Поэтому, казалось бы, для нахождения энергетических собственных состояний достаточно найти собственные состояния
К сожалению, прямолинейно это рассуждение не работает. Проблема в том, что, как мы говорили, локален в 𝕐. Соответственно, собственные состояния эквивалентного ему оператора в 𝕍3D
задаются формулой |R⟩ ⊗ |λ⟩, где |λ⟩ есть собственное состояние в 𝕐, а |R⟩ — произвольное состояние в 𝕍r (упр. 2.23).Иными словами, каждое собственное значение λ оператора сильно вырождено[98]
, а значит, нет никакой гарантии, что произвольное состояние вида |R⟩ ⊗ |λ⟩ автоматически является собственным состоянием гамильтониана. Мы можем сказать лишь, что у гамильтониана существует собственный базис, такой что каждый из его элементов имеет вид |R⟩ ⊗ |λ⟩. Следовательно, наша стратегия должна состоять в том, чтобы отобрать из состояний вида |R⟩ ⊗ |λ⟩ те, что являются собственными состояниями гамильтониана.Чтобы осуществить отбор, запишем эти состояния в координатном базисе
ψ(r
,θ,φ) = R(r)Yλ(θ,φ) (4.29)и продемонстрируем следующее.
Упражнение 4.16.
Пусть волновая функция вида (4.29) представляет собственное состояние гамильтониана с собственным значением E [т. е. удовлетворяет стационарному уравнению Шрёдингера]. Покажите, что для этого необходимо и достаточно, чтобы радиальная часть волновой функции (4.29) удовлетворяла радиальному уравнениюТаким образом, мы разделили задачу на две более простые: привести к диагональному виду и решить обыкновенное дифференциальное уравнение (4.30)[99]
. Более того, только вторую из этих задач требуется решать заново для каждого конкретного потенциала. Первая же задача не зависит от того, о каком потенциале идет речь, поэтому ее понадобится решить лишь однажды. Это и будет нашей целью в следующем разделе.4.3. Собственные состояния момента импульса
4.3.1. Матричное представление момента импульса
Задача нахождения собственных значений и собственных состояний наблюдаемого осложняется следующим обстоятельством.
Упражнение 4.17.
Покажите, что в 𝕐 существуют вырожденные собственные значения Подсказка:
используйте тот факт, что два наблюдаемых одновременно приводятся к диагональному виду в том и только том случае, если они коммутируют (упр. 1.36), к операторам Приведенный результат означает, что собственного значения λ может быть недостаточно для однозначной идентификации собственного состояния оператора Как нам известно из упр. A.70, каждое λ определяет подпространство
собственных состояний и это подпространство может быть не одномерным. Нам нужно найти базис и размерность для каждого из этих подпространств.С данной целью введем в картину дополнительное наблюдаемое в 𝕐, которое коммутирует с Тогда это наблюдаемое будет иметь с общий набор собственных состояний (см. упр. 1.36) и, следовательно, породит ортонормальный собственный базис в каждом λ-подпространстве. В случае удачного выбора этого дополнительного наблюдаемого данные собственные базисы будут невырожденными по отношению к собственному значению μ этого нового наблюдаемого; тогда пара собственных значений λ, μ однозначно идентифицирует состояния.
Традиционно в качестве наблюдаемого, удовлетворяющего этому условию (как мы увидим позже), выбирают [100]
. Так что наша задача — найти общие собственные состояния |λμ⟩ и [101].Волновые функции состояний |λμ⟩ можно, в принципе, получить, решив уравнения
в координатном базисе с использованием дифференциальных операторов (4.25c) и (4.26). Однако эта дорога быстро завела бы нас в джунгли громоздкой математики. К счастью, существует и другой путь. Мы можем много узнать об этих состояниях, о соответствующих им собственных значениях и даже о матрицах компонентов оператора момента импульса просто из перестановочных соотношений между этими компонентами. Когда мы получим эти данные, нам все равно понадобится некоторое количество матанализа, чтобы определить волновые функции, но усилий потребуется намного меньше, чем при прямых вычислениях.