Читаем Отличная квантовая механика полностью

Мы видим, что выражения (4.25) для момента импульса в сферических координатах зависят только от θ и φ, но не от r, тогда как для оператора все наоборот. Это подтверждает наши интуитивные предположения: первый оператор в левой части стационарного уравнения Шрёдингера (4.23) локален в пространстве 𝕍r, а второй — в пространстве 𝕐 Воспользуемся этим фактом, чтобы решить уравнение Шрёдингера.

В упражнении 4.13 мы обнаружили, что эрмитов оператор коммутирует с гамильтонианом. Как нам известно (упр. 1.36), два коммутирующих эрмитовых оператора имеют общий собственный базис, в котором оба они принимают диагональный вид. Поэтому, казалось бы, для нахождения энергетических собственных состояний достаточно найти собственные состояния

К сожалению, прямолинейно это рассуждение не работает. Проблема в том, что, как мы говорили, локален в 𝕐. Соответственно, собственные состояния эквивалентного ему оператора в 𝕍3D задаются формулой |R⟩ ⊗ |λ⟩, где |λ⟩ есть собственное состояние в 𝕐, а |R⟩ — произвольное состояние в 𝕍r (упр. 2.23).

Иными словами, каждое собственное значение λ оператора  сильно вырождено[98], а значит, нет никакой гарантии, что произвольное состояние вида |R⟩ ⊗ |λ⟩ автоматически является собственным состоянием гамильтониана. Мы можем сказать лишь, что у гамильтониана существует собственный базис, такой что каждый из его элементов имеет вид |R⟩ ⊗ |λ⟩. Следовательно, наша стратегия должна состоять в том, чтобы отобрать из состояний вида |R⟩ ⊗ |λ⟩ те, что являются собственными состояниями гамильтониана.

Чтобы осуществить отбор, запишем эти состояния в координатном базисе

ψ(r,θ,φ) = R(r)Yλ(θ,φ) (4.29)

и продемонстрируем следующее.


Упражнение 4.16. Пусть волновая функция вида (4.29) представляет собственное состояние гамильтониана с собственным значением E [т. е. удовлетворяет стационарному уравнению Шрёдингера]. Покажите, что для этого необходимо и достаточно, чтобы радиальная часть волновой функции (4.29) удовлетворяла радиальному уравнению

Таким образом, мы разделили задачу на две более простые: привести к диагональному виду и решить обыкновенное дифференциальное уравнение (4.30)[99]. Более того, только вторую из этих задач требуется решать заново для каждого конкретного потенциала. Первая же задача не зависит от того, о каком потенциале идет речь, поэтому ее понадобится решить лишь однажды. Это и будет нашей целью в следующем разделе.

4.3. Собственные состояния момента импульса

4.3.1. Матричное представление момента импульса

Задача нахождения собственных значений и собственных состояний наблюдаемого осложняется следующим обстоятельством.


Упражнение 4.17. Покажите, что в 𝕐 существуют вырожденные собственные значения

Подсказка: используйте тот факт, что два наблюдаемых одновременно приводятся к диагональному виду в том и только том случае, если они коммутируют (упр. 1.36), к операторам

Приведенный результат означает, что собственного значения λ может быть недостаточно для однозначной идентификации собственного состояния оператора Как нам известно из упр. A.70, каждое λ определяет подпространство собственных состояний и это подпространство может быть не одномерным. Нам нужно найти базис и размерность для каждого из этих подпространств.

С данной целью введем в картину дополнительное наблюдаемое в 𝕐, которое коммутирует с Тогда это наблюдаемое будет иметь с общий набор собственных состояний (см. упр. 1.36) и, следовательно, породит ортонормальный собственный базис в каждом λ-подпространстве. В случае удачного выбора этого дополнительного наблюдаемого данные собственные базисы будут невырожденными по отношению к собственному значению μ этого нового наблюдаемого; тогда пара собственных значений λ, μ однозначно идентифицирует состояния.

Традиционно в качестве наблюдаемого, удовлетворяющего этому условию (как мы увидим позже), выбирают [100]. Так что наша задача — найти общие собственные состояния |λμ⟩ и [101].

Волновые функции состояний |λμ⟩ можно, в принципе, получить, решив уравнения

в координатном базисе с использованием дифференциальных операторов (4.25c) и (4.26). Однако эта дорога быстро завела бы нас в джунгли громоздкой математики. К счастью, существует и другой путь. Мы можем много узнать об этих состояниях, о соответствующих им собственных значениях и даже о матрицах компонентов оператора момента импульса просто из перестановочных соотношений между этими компонентами. Когда мы получим эти данные, нам все равно понадобится некоторое количество матанализа, чтобы определить волновые функции, но усилий потребуется намного меньше, чем при прямых вычислениях.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука