Читаем Отличная квантовая механика полностью

Мы будем следовать стратегии, напоминающей метод, которым мы пользовались в подразд. 3.8.2 при работе с гармоническим осциллятором. Начнем с того, что определим аналоги операторов рождения и уничтожения — повышающий и понижающий операторы (raising and lowering operators, иногда также называемые лестничными) — как


Упражнение 4.18. Покажите, что:


Упражнение 4.19. Пусть некоторое состояние |λμ⟩ есть общее собственное состояние Покажите, что тогда:

a) состояние также является общим собственным состоянием этих операторов с собственными значениями λ, μ + ℏ;

b) состояние также является общим собственным состоянием этих операторов с собственными значениями λ, μ — ℏ.

Подсказка: попробуйте применить тот же подход, что и в упр. 3.61.

Данное упражнение показывает, что состояния и пропорциональны нормированным состояниям |λ, μ + ℏ⟩ и |λ, μ — ℏ⟩ соответственно. В следующем упражнении мы найдем коэффициент пропорциональности.


Упражнение 4.20. Покажите, что, пренебрегая произвольным фазовым множителем,

Подсказка: используя упр. 4.18, c), найдите и и согласуйте результат с утверждениями, доказанными в упр. 4.19.


Упражнение 4.21. Покажите, что μ2 не может быть больше λ.


Упражнение 4.22. Покажите, что утверждение, содержащееся в упр. 4.21 может выполняться, только если λ = ℏ2l (l + 1) и μ = ℏm при том, что:

• l есть неотрицательное целое или полуцелое число

• для заданного l, m ∈ { —l, — l + 1, …, l — 1, l}.

Подсказка: примените ту же логику, что и в подразд. 3.8.2, где мы доказывали, что собственные значения оператора числа квантов гармонического осциллятора должны быть целыми.

Это один из основных результатов данного раздела. Если мы пытаемся измерить наблюдаемое в некотором состоянии, то мы можем получить только значения Далее если мы сначала приготовим нашу систему в состоянии с заданным (например, измерив его), а затем произведем измерение наблюдаемого то мы получим одно из 2l + 1 возможных значений в диапазоне от — lℏ до lℏ с шагом ℏ. Мы видим, что, как и говорилось в начале этого раздела, собственные значения вырождены, и степень вырождения (число ортогональных собственных состояний, соответствующих одному и тому же собственному значению) составляет 2l + 1.

В дальнейшем мы будем использовать нотацию |lm⟩ вместо |λμ⟩ для обозначения общих собственных состояний и с собственными значениями λ = ℏ2l (l + 1) и μ = ℏm соответственно. В контексте движения материальной точки значение l называется орбитальным квантовым числом[102], а m — магнитным квантовым числом.


Упражнение 4.23§. Покажите, что уравнения (4.32) можно переписать следующим образом:

Обратите внимание, что упр. 4.22 устанавливает только необходимые условия для существования общих собственных состояний и с заданными собственными значениями. Мы пока не знаем, существует ли собственное состояние для заданной пары (l, m), даже если она удовлетворяет приведенным условиям, и является ли это собственное состояние единственным. Мы обратимся к данному вопросу в следующем разделе. Пока же просто примем единственность и существование состояний |lm⟩ как факт. Из этого будет следовать, что они согласно спектральной теореме (упр. A.60) образуют ортонормальный базис в 𝕐. В контексте физики момента импульса мы будем называть базис {|lm⟩} каноническим.


Упражнение 4.24. Покажите, что элементы матрицы где обнуляются всякий раз, когда ll', не вычисляя их в явном виде.

Согласно приведенному результату, матрицы всех компонентов как и имеют структуру, показанную в табл. 4.1. Это блочно-диагональная матрица, каждый блок которой описывает оператор момента импульса в пределах подпространства гильбертова пространства 𝕐, связанного с каким-то конкретным значением l. Размер каждого блока составляет (2l + 1) × (2l + 1). В каждом блоке значения m традиционно располагаются в порядке уменьшения.


Упражнение 4.25. Найдите элементы матрицы где


Упражнение 4.26§. Выпишите матрицы из упр. 4.25 в явном виде для подпространств гильбертова пространства, связанных с:

a) l = 1/2,

b) l = 1.

Убедитесь в обоих случаях, что матрицы момента импульса подчиняются уравнению

Обратите внимание, что матрицы момента импульса для подпространства l = 1/2 пропорциональны матрицам Паули [см. (1.7)]. Это тождество объясняет физику, которая стоит за индексами x, y и z, присваиваемыми нами этим матрицам на протяжении всего курса.


Упражнение 4.27. Предположим, вы производите измерения компонентов x или y момента импульса некоторой частицы.

a) Какие возможные значения могут быть получены при измерении, если известно, что частица приготовлена в состоянии с:

1) l = 1/2,

2) l = 1?

Ответ:

1) {ℏ/2, — ℏ/2},

2) {ℏ, 0, — ℏ}.

b) Найдите состояния, в которые схлопнется состояние частицы, выразив их в каноническом базисе.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука