Читаем Отличная квантовая механика полностью

где мы воспользовались разложением экспоненты в ряд Тейлора. Как нам известно, волновая функция, которая стремится к бесконечности, нефизична.

Для предотвращения этого мы должны потребовать, чтобы ряд был конечен. Данное условие выполняется, если множитель перед Aj в (4.49) обнуляется при некотором j = n. В этом случае

и все Aj при j > n обнуляются.


Упражнение 4.38. Вычислите радиальные волновые функции Rnl (r) атома водорода при

a) n = 1, l = 0;

b) n = 2, l = 0;

c) n = 2, l = 1.

Пронормируйте эти волновые функции согласно

Подсказка:

Ответ (рис. 4.3):

Теперь мы понимаем физический смысл боровского радиуса: он определяет характерный размер волновых функций энергетических собственных состояний, а также примерный радиус орбитали основного состояния.

4.4.2. Энергетический спектр и переходы

Объединяя уравнения (4.48) и (4.51), получаем

Этот результат отмечает важную веху: мы рассчитали энергетический спектр атома водорода[106].

Интересно, что, хотя радиальные волновые функции зависят от орбитального квантового числа l, энергетические собственные значения (4.56) от него не зависят, а определяются верхним пределом n суммы (4.47). Поэтому n называется главным квантовым числом.

Каждый энергетический уровень, обозначаемый величиной n, вырожден по отношению к орбитальному квантовому числу l, которое может принимать любое целое значение от 0 до n — 1. Но реальная вырожденность энергетических уровней еще выше. Чтобы убедиться в этом, вспомним, что волновая функция (4.43) электрона в атоме водорода имеет в дополнение к радиальной угловую часть. Угловая часть волновой функции зависит от магнитного квантового числа m, которое не влияет на энергию. Кроме того, каждый электрон имеет спиновую степень свободы, соответствующую двумерному гильбертовому пространству.


Упражнение 4.39. Покажите, что степень вырождения энергетического уровня с главным квантовым числом n равна 2n2.

Прежде чем продолжить, введем следующее соглашение. Поскольку главное, орбитальное и магнитное квантовые числа определяют состояние движения электрона в атоме, мы будем обозначать это состояние |nlm⟩ и перепишем уравнение (4.43) следующим образом:

ψnlm(r,θ,φ) = Rnl(r)Ylm(θ,φ). (4.57)

Отступление 4.2. Модель атома: краткая история

Хотя идея атома восходит еще к древнегреческим философам (само слово «атом» имеет греческое происхождение и означает «неделимый»), его первую физическую модель предложил в 1904 г. Дж. Дж. Томсон вскоре после совершенного им же открытия электрона. Он предположил, что отрицательно заряженные электроны размещаются внутри комка положительно заряженного вещества, как изюминки в пудинге.

Гипотеза Томсона была опровергнута при помощи экспериментов, проведенных Эрнестом Резерфордом; в этих экспериментах металлическая фольга подвергалась бомбардировке альфа-частицами. Резерфорд с коллегами обнаружил, что хотя бóльшая часть частиц пролетала сквозь фольгу так, будто ее там не было, очень небольшая их доля (~1/8000) отражалась назад. Резерфорд интерпретировал это наблюдение как свидетельство того, что положительные заряды в атоме сосредоточены в крохотных, но тяжелых ядрах. После этого, в 1911 г., Резерфорд предложил планетарную модель атома[107], согласно которой электроны обращаются вокруг ядер примерно так же, как планеты вокруг Солнца. Легенда гласит, что однажды утром Резерфорд, войдя в лабораторию, громко объявил: «Теперь я знаю, как выглядит атом!»

У модели Резерфорда, однако, был серьезный недостаток, который сам ученый и его коллеги сразу же осознали. Обращаясь вокруг ядра, электрон должен создавать вокруг себя переменные электрическое и магнитное поля, порождая тем самым электромагнитную волну, которая должна будет унести с собой часть энергии электрона. В результате частица упадет на ядро в течение пикосекунд.

Резерфорд попросил своего сотрудника, молодого теоретика Нильса Бора, разрешить это противоречие. Не прошло и двух лет, как Бор нашел для него частичное решение[108]. Он постулировал существование дискретного множества «стационарных» орбит, на которых электрон может находиться, ничего при этом не излучая. А именно, орбита является стационарной, если ее момент импульса равен целому числу постоянных Планка ℏ:

pr = nℏ. (4.58)

Если электрон переходит с одной стационарной орбиты на другую, он излучает или поглощает фотон, энергия которого равна разности энергий между уровнями. Спектр оптических переходов атома водорода, рассчитанный Бором на основании предложенной им модели (см. упр. 4.41), вполне укладывался, как оказалось, в формулу Ридберга (4.61), которая к тому моменту уже была известна эмпирически (см. отступление 4.3), и демонстрировал прекрасное совпадение с экспериментальными данными.

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука