А теперь введем в картину взаимодействия между электронами. Квантовую задачу многих тел можно упростить, заметив, что электроны на разных оболочках, как правило, слабо взаимодействуют между собой. Так происходит потому, что, как видно из рис. 4.3, электроны более низких оболочек располагаются в среднем намного ближе к ядру. Пространственные перекрытия волновых функций, связанных с разными оболочками, относительно невелики, так что электроны проводят мало времени в непосредственной близости друг к другу. «С точки зрения» электронов внешних оболочек, частицы внутренних оболочек, по существу, играют роль плотной отрицательно заряженной сферы (отсюда и термин «оболочка») вокруг ядра, экранируя его притягивающий потенциал своим отрицательным зарядом.
Химические свойства элемента определяются прежде всего электронами самой внешней занятой оболочки — валентной
. Дело в том, что они обладают наибольшими энергиями (рис. 4.4) и потому скорее вступают в химические реакции. Принципиальным фактором является число электронов на внешней оболочке. Если она заполнена (принцип Паули не позволяет дополнительным электронам проникать в нее), то атом неохотно реагирует с другими атомами — это характерно для инертных газов. Как можно увидеть из табл. 4.2, так обстоит дело с гелием (атомный номер Z = 2) и неоном (Z = 2 + 8 = 10). Обратите внимание, что следующий инертный газ — аргон — имеет атомный номер Z = 18, а не 2 + 8 + 18 = 28, так что он не следует данному правилу. Я объясню это чуть позже.Если валентная оболочка содержит только один электрон (у лития с Z
= 2 + 1 = 3, натрия с Z = 10 + 1 = 11, калия с Z = 18 + 1 = 19 и т. д.), он слабо взаимодействует с электронами внутренних оболочек и ведет себя так, будто является единственным электроном в атоме. Эти элементы называются щелочными металлами. При вступлении в химические реакции такие атомы чаще всего отдают свой единственный валентный электрон и превращаются в положительные ионы. Происходит это потому, что энергия связанного состояния внешнего электрона близка к нулю.У галогенов (фтора с Z
= 10 — 1 = 9, хлора с Z = 18 — 1 = 17 и т. д.), напротив, в валентной оболочке не хватает только одного электрона, а значит, подобным атомам выгоднее «перетащить» к себе какой-нибудь электрон и заполнить таким образом свою внешнюю оболочку, придя в низкоэнергетическое собственное состояние. Именно поэтому щелочные металлы и галогены склонны мощно реагировать друг с другом, образуя стабильные соединения, такие как поваренная соль (NaCl).У группы элементов в табл. 4.2, которая начинается с калия (Z
= 19), оболочка n = 4 начинает заполняться еще до того, как заполнилась оболочка n = 3, l = 2. Причина в следующем. Мы уже выяснили, что в атоме водорода состояния с одним и тем же главным квантовым числом n, но с разными орбитальными квантовыми числами l обладают одинаковой энергией. Оказывается, это уникальное свойство атомов и ионов, имеющих всего один электрон. Электроны с бóльшими значениями момента импульса располагаются в среднем дальше от ядра. Следовательно, в многоэлектронном атоме электрон в состоянии с большим l заслонен от поля ядра другими электронами, а потому обладает большей энергией, чем его собрат с тем же n, но меньшим l[110]. Это свойство особенно ярко проявляется при высоких значениях n и l. В частности, состояния с n = 3, l = 2 обладают большей энергией, чем состояния с n = 4, l = 0. Поэтому после аргона, у которого состояния с n = 3 и l = 0, 1 заполнены, начинает заполняться четвертая оболочка, хотя в третьей еще есть вакантные места. Именно по этой причине аргон ведет себя как инертный газ.Разумеется, третья оболочка тоже должна будет когда-то заполниться. Такое происходит при значениях Z
от 21 до 30, от скандия до цинка. Поскольку у всех этих элементов (кроме хрома и меди) на внешней оболочке находится два электрона, все они имеют относительно схожие химические свойства.4.5. Сфера Блоха
В предыдущем разделе мы нашли собственные состояния операторов, связанных с проекциями вектора момента импульса на разные оси. Теперь давайте поставим перед собой обратную задачу. Можно ли рассматривать произвольный элемент гильбертова пространства как собственное состояние проекции момента импульса на какую-то конкретную ось? Иными словами, можно ли ассоциировать вектор момента импульса определенного направления с некоторым состоянием движения, как это делается в классической физике? Ответ оказывается утвердительным, но только для подпространства, связанного с
Упражнение 4.48.
Рассмотрим произвольное нормированное спиновое состояние — обозначения состояний частицы со спином 1/2, соответствующих магнитным квантовым числам ms = 1/2 и –1/2. Без потери общности определим общую квантовую фазу этого состояния так, что ψ↑ действительно и неотрицательно.a) Покажите, что для любого состояния |ψ⟩ мы можем определить единственную пару углов θ ∈ [0, π] и φ ∈ [0, 2π), такую что