Читаем Отличная квантовая механика полностью

b) Покажите, что состояние |ψ⟩ есть собственное состояние проекции момента импульса [111] на вектор направленный вдоль сферических углов θ, φ с собственным значением ℏ/2.

c) Покажите, что декартовы координаты вектора равны средним значениям наблюдаемых для соответствующего состояния |ψ⟩.

Подсказка: вспомните упр. 4.28.

Из упражнения 4.48 мы узнаем, что для каждого спинового состояния |ψ⟩ можно определить вектор, такой что спин в этом состоянии «указывает в направлении» этого вектора. Он называется вектором Блоха состояния |ψ⟩, а полное множество таких векторов называется сферой Блоха.


Упражнение 4.49. Объясните, почему аналогичное соответствие не может быть установлено для подпространств с моментом импульса


Упражнение 4.50§. Убедитесь, что собственные состояния операторов соотносятся с точками на сфере Блоха так, как показано на рис. 4.5.


Упражнение 4.51. Покажите, что любые два состояния, представленные противоположными точками на сфере Блоха, ортогональны.

Гильбертово пространство, связанное с частицей со спином представляет собой кубит. И в самом деле, его базис состоит из двух элементов: «спин-вверх» |↑⟩ и «спин-вниз» |↓⟩. Это означает, что мы можем установить однозначное соответствие (изоморфизм[112]) между состояниями спина и любого другого кубита — например, спиновое состояние α|↑⟩ + β|↓⟩ ставится в соответствие поляризационному α|H⟩ + β|V⟩. Тогда собственные состояния Ŝx будут отображаться на состояния диагональной поляризации |+⟩ и |—⟩, а собственные состояния Ŝy — на состояния круговой поляризации |R⟩ и |L⟩.

Исходя из сказанного, мы можем представить поляризационные состояния при помощи точек на сфере Блоха (рис. 4.5). Обратите внимание, что линейные поляризационные состояния |α⟩ = cos α |H⟩ + sin α |V⟩ (где α — угол поляризации) могут в то же время быть записаны в соответствии с (4.62) как (где θ — полярный угол на сфере Блоха). Это означает, что данный угол равен удвоенному углу поляризации. К примеру, как видно из рис. 4.5, состояния |H⟩ и |V⟩ разделены на сфере Блоха углом 180º, а состояния |H⟩ и |±⟩ — углом 90º.

Обратите внимание на разницу в логике нашей работы с операторами Паули и их собственными векторами при изучении поляризации фотона в главе 1 и спина в данной главе. В первом случае мы сначала ввели три поляризационных базиса, а затем в упр. 1.29 определили операторы Паули как наблюдаемые, связанные с этими базисами. Здесь же мы сначала в упр. 4.26 получили операторы Паули из физики момента импульса, а затем вычислили их собственные состояния.


Упражнение 4.52. Горизонтально поляризованный фотон проходит через:

a) полуволновую пластинку;

b) * четвертьволновую пластинку с оптической осью, ориентированной под углом α к горизонтали. Постройте траекторию получающихся поляризационных состояний на сфере Блоха для всех возможных значений α.

Подсказка: обратитесь к упр. 1.24. Часть b) может быть решена численно.

Отступление 4.4. Магнитный момент в магнитном поле: классическая физика

Предположим, что прямоугольная рамка размером a × b, по которой протекает ток I, помещается в магнитное поле ориентированное вдоль оси z. Нормаль к рамке располагается под углом α к оси z, как показано на рисунке. На каждую сторону рамки действует сила Ампера, которая в общем виде выражается так: — вектор длины этой стороны. Силы, действующие на стороны длиной a, скомпенсируют друг друга, а вот силы, действующие на стороны длиной b (величина их равна Fb = IbB), породят момент силы величиной τ = 2Fb × (a/2)sin α = IBab sinα = IBA α, где A — площадь рамки.

Магнитный момент носителем которого является рамка, представляет собой вектор величины

μ = Iab = IA, (4.64)

перпендикулярный плоскости рамки. Следовательно, момент силы, действующий на рамку, равен

В этом виде соотношение имеет достаточно общий характер и верно для рамок любой формы.

Каждый из проводников, на которые действуют магнитные силы, обладает вследствие этого потенциальной энергией. Вычислим полную потенциальную энергию рамки в зависимости от угла α, считая, что рамка может вращаться вокруг оси, совпадающей с одной из ее сторон длиной b, и что α = π/2 соответствует положению с нулевой энергией. Поворот рамки из этого положения в положение с другим α означает смещение другой стороны длиной b на расстояние ±a cos α в направлении y и совершение работы W = —Fba cos α = —IBab cos α = —μB cos α. Следовательно, потенциальная энергия задается уравнением

Последнее выражение опять же не зависит от формы рамки или положения оси. Потенциальная энергия магнитного диполя в магнитном поле минимальна, когда диполь и поле коллинеарны.

В дополнение к току заряженные частицы, проходящие по рамке, несут с собой массу, так что их движение имеет момент импульса Магнитный момент пропорционален моменту импульса

где коэффициент пропорциональности есть гиромагнитное отношение (gyromagnetic ratio — см. также упр. 4.54).

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука