Читаем Отличная квантовая механика полностью

Частицы могут иметь «встроенный» момент импульса — спин Визуально его можно представить как вращение частицы вокруг своей оси — в отличие от «орбитального» движения точечной частицы во внешнем поле, которое мы изучали до сих пор. Спиновая степень свободы подчиняется правилам для собственных состояний момента импульса, выведенных в подразд. 4.3.1. В частности, возможные собственные значения наблюдаемого задаются формулой s (s + 1) ℏ2, где s — неотрицательное целое или полуцелое число[105]. Поскольку спиновая степень свободы не имеет представления в координатном базисе, s имеет право принимать полуцелые значения.

Конкретное значение s определяется природой частицы, на него невозможно повлиять внешними средствами. Скажем, электроны, протоны и нейтроны имеют тогда как у фотонов s = 1.

Физики иногда используют термин «спин» для обозначения именно этого значения s — точно так же, как они используют термин «момент импульса» для обозначения значения l — несмотря на то, что эти значения не представляют реальных абсолютных величин Например, говорят, что спин электрона равен 1/2.

Частицы с полуцелым спином называются фермионами, а с целым — бозонами. Согласно принципу запрета Паули, два идентичных фермиона не могут находиться в одном и том же квантовом состоянии. Этот принцип крайне важен для многих физических явлений, например, для периодического закона химических элементов (подразд. 4.4.3). Однако физические причины, стоящие за принципом Паули, требуют понимания квантовой электродинамики и потому выходят за рамки данного курса.

Компонент наблюдаемого спина вдоль оси z имеет собственные значения, заданные msℏ, где ms ∈ {—s,…, s} называется спиновым квантовым числом. В отличие от числа s, значения проекции спинового оператора частицы на конкретную ось не определяются природой частицы. Мы можем приготовить состояния спина с любыми значениями ms из диапазона, разрешенного спином частицы, а также произвольные их суперпозиции.

4.4. Атом водорода

4.4.1. Радиальные волновые функции

В разделе 3.5 я упоминал, что одним из основных мотивов нашего интереса к стационарному уравнению Шрёдингера является то, что оно позволяет нам получить энергетические уровни электронов в атомах. Поскольку переходы между энергетическими уровнями связаны с поглощением или испусканием оптического фотона, эти теоретические расчеты можно непосредственно проверить экспериментально. Теперь мы вооружены знаниями и можем рассчитать энергетические уровни и соответствующие им волновые функции атома водорода. Точное совпадение результатов этих расчетов с экспериментальными данными по эмиссионному спектру атомарного водорода стало одним из самых значительных триумфов квантовой механики (см. отступление 3.2).

В атоме водорода электрон движется в электростатическом потенциале, создаваемом тяжелым ядром:

где e — заряд электрона, а ε0 — электрическая постоянная (мы пользуемся системой СИ). Следовательно, задача об атоме водорода представляет собой частный случай движения в центральном поле. Поэтому мы можем воспользоваться стратегией, изложенной в подразд. 4.2.2, а именно искать энергетическую собственную волновую функцию в виде произведения (4.29). В этом произведении, как мы теперь знаем, λ = ℏ2l (l + 1), а угловой компонент волновой функции Yλ(θ,φ) = Ylm(θ,φ) — одна из сферических гармоник, так что мы можем переписать его как

ψElm(r,θ,φ) = REl(r)Ylm(θ,φ). (4.43)

Все, что нам теперь нужно сделать, — это найти радиальный компонент, который мы обозначили REl (r).


Упражнение 4.34§. Напишите радиальное уравнение (4.30) для атома водорода.

Ответ:

Хотя это обыкновенное дифференциальное уравнение, решить его довольно трудно. Первый шаг в его упрощении — простая замена переменной.


Упражнение 4.35. Переопределите

REl (r) = UEl (r)/r (4.45)

и перепишите (4.44) для UEl (r).

Ответ:

Распространенный подход при решении дифференциальных уравнений — попытаться угадать общий вид решения, а затем подогнать его параметры так, чтобы они удовлетворяли уравнению. В данном случае мы попробуем искать решение в виде

Следующее упражнение поможет понять, как мы пришли к этой догадке.


Упражнение 4.36. Покажите, что асимптотическое поведение UEl (r), заданное приведенным выше уравнением, согласуется с (4.46) при r → 0 и r → ∞.

А теперь найдем коэффициенты Aj и верхний предел суммирования в (4.47).


Упражнение 4.37. Покажите, что для выполнения уравнения (4.46) должно удовлетворяться следующее соотношение:

Последняя величина имеет размерность длины и известна как боровский радиус. Его физический смысл мы вскоре выясним.

Из (4.49) мы знаем, что Aj+1/Aj → 2κ/j при больших j. Если бы ряд (4.47) с таким свойством был бесконечен (n = ∞), то он расходился бы. И действительно, в пределе при j → ∞ мы имели бы Aj ~ (2κ) j/j! и, следовательно, при r → ∞

Перейти на страницу:

Похожие книги

Теория государства и права: Учебник для высших учебных заведений.
Теория государства и права: Учебник для высших учебных заведений.

В учебнике в доступной форме рассматриваются основные вопросы общей теории государства и права, изложены научные представления о социальной природе, сущности и назначении государства и права, раскрываются обобщенные систематизированные знания о функционировании и развитии правовых явлений и институтов общественной жизни. Центральная идея книги - приоритет и обеспечение прав и свобод человека. С позиций защиты прав человека и гражданина как высшей социальной ценности рассматриваются основные положения общей теории государства и права.Издание предназначено студентам юридических вузов, аспирантам, научным работникам и преподавателям, а также всем, кто интересуется вопросами общей теории права и государства.Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности 021100 - «Юриспруденция».Учебник подготовлен при информационной поддержке правовой системы «КонсультантПлюс».

Магомет Имранович Абдулаев

Учебники и пособия ВУЗов
Бюджетное право
Бюджетное право

В учебнике представлен комплекс академических знаний по бюджетному праву и современному государственному хозяйству, отражены новейшие тенденции в их развитии. В Общей части даются базовые понятия, рассматриваются функции и принципы бюджетного права, впервые подробно говорится о сроках в бюджетном праве и о его системе. В Особенную часть включены темы публичных расходов и доходов, государственного долга, бюджетного устройства, бюджетного процесса и финансового контроля. Особое внимание уделено вопросам, которые совсем недавно вошли в орбиту бюджетного права: стратегическому планированию, контрактной системе, суверенным фондам, бюджетной ответственности.Темы учебника изложены в соответствии с программой базового курса «Бюджетное право» НИУ ВШЭ. К каждой теме прилагаются контрольные вопросы, список рекомендуемой научной литературы для углубленного изучения, а также учебные схемы для лучшего усвоения материала.Для студентов правовых и экономических специальностей, аспирантов, преподавателей и всех, кто интересуется проблемами публичных финансов и публичного права.

Дмитрий Львович Комягин , Дмитрий Пашкевич

Экономика / Юриспруденция / Учебники и пособия ВУЗов / Образование и наука
История Франции
История Франции

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго и др., считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения. Ему принадлежит целая серия книг, посвященных истории Англии, США, Германии, Голландии. В «Истории Франции», впервые полностью переведенной на русский язык, охватывается период от поздней Античности до середины ХХ века. Читая эту вдохновенную историческую сагу, созданную блистательным романистом, мы начинаем лучше понимать Францию Жанны д. Арк, Людовика Четырнадцатого, Францию Мольера, Сартра и «Шарли Эбдо», страну, где великие социальные потрясения нередко сопровождались революционными прорывами, оставившими глубокий след в мировом искусстве.

Андре Моруа , Андрэ Моруа , Марина Цолаковна Арзаканян , Марк Ферро , Павел Юрьевич Уваров

Культурология / История / Учебники и пособия ВУЗов / Образование и наука