Читаем Почему у пингвинов не мерзнут лапы? и еще 114 вопросов, которые поставят в тупик любого ученого полностью

Реакция кислорода с гемоглобином относится к сильным экзотермическим: когда молекула гемоглобина присоеди­няется к кислороду, выделяется определенное количество тепла. Как правило, такое же количество тепла поглоща­ется в обратной реакции, когда от гемоглобина отделяется кислород. Но поскольку окисление и вытеснение кислорода происходит в разных отделах организма, изменение пара­метров молекулярной среды, например кислотности, мо­жет привести к избыточной потере или накоплению тепла.

Количество тепла может варьироваться у разных су­ществ. Организм антарктических пингвинов устроен так, что в морозы ткани периферийных органов, в том числе лап, выделяют меньше тепла, чем человеческие стопы. У этого явления есть два преимущества. Прежде всего, в гемоглобин птиц попадает меньше тепла при вытеснении кислорода, поэтому вероятность замерзания лап заметно снижается.

Еще одно преимущество — следствие законов термо­динамики. При любой обратимой реакции, в том числе при поглощении или вытеснении кислорода гемоглоби­ном, низкие температуры способствуют развитию реакции в экзотермическом направлении и препятствуют развитию в обратном. Следовательно, при низких темпе­ратурах кислород активнее поглощается гемоглобином большинства живых существ и отделяется от него с тру­дом. Сравнительно низкое количество тепла означает, что в холодных тканях соединение гемоглобина с кислородом не достигает уровня, при котором кислород не может от­делиться от него.

Изменение количества тепла у разных видов живых существ — еще одно любопытное следствие. У некоторых антарктических рыб тепло обычно выделяется при высво­бождении кислорода. В крайнем проявлении это наблю­дается у тунца, который при отделении кислорода от ге­моглобина выдает столько тепла, что может поддерживать температуру тела, примерно на 17 °С превышающую тем­пературу окружающей среды. Значит, тунец вовсе не хлад­нокровный!

Обратное явление наблюдается у животных, которым необходимо снижать количество тепла из-за чрезмерной метаболической активности. При окислении гемоглобина количество тепла в организме мигрирующей водяной ку­рочки превышает этот же показатель в организме просто­го голубя. Поэтому курочка может преодолевать большие расстояния и не перегреваться.

И наконец, эмбрионам необходимо куда-то девать теп­ло, а единственное звено, которое связывает их с внеш­ним миром, — кровеносная система матери. Снижение количества тепла при окислении гемоглобина эмбриона по сравнению с гемоглобином матери приводит к тому, что при выходе кислорода из крови матери тепла поглоща­ется больше, чем выделяется при окислении гемоглобина эмбриона. Таким образом, тепло попадает в кровеносную систему матери и уносится от эмбриона.

Крис Купер и Майк Уилсон Университет Эссекса, Колчестер, Великобритания


Полеты на плавниках

«Почему летучие рыбы летают? Спасаются от хищников, ловят в воздухе насекомых или просто полеты для них — более эффективный способ передвижения, чем плавание? Или существует совершенно иная причина?»

Джулиан Картрайт Пальма-де-Майорка, Испания

Обычно полеты летучих рыб объясняют бегством от хищ­ников, особенно от стремительных дельфинов. Рыбы вы­скакивают из воды не для того, чтобы ловить насекомых: летучие рыбы живут в открытом океане, а над больши­ми водными пространствами насекомые летают редко.

Было высказано предположение, что рыбы летают (на самом деле парят, так как «крыльями» они не ма­шут), чтобы сэкономить энергию, но для энергичных взлетов требуется активная работа белых анаэробных мышц, заставляющих хвост совершать 50—70 движений в секунду. Эти действия сопряжены с огромными затра­тами энергии.

Роговица глаза летучих рыб снабжена плоскими фа­сетками, поэтому рыбы видят и в воде, и в воздухе. На­блюдения позволяют предположить, что рыбы способны выбирать места «приземления». Возможно, так они пере­бираются в места, богатые пищей, но эта гипотеза пока не получила подтверждения.

Несомненно, бегство от хищников — главная причина полетов, именно поэтому рыб так часто видят улетающи­ми от кораблей и лодок, которые рыбы считают источни­ками угрозы.

Джон Дейвенпорт Морская биологическая станция, Университет Миллпорт, остров Камбра, Великобритания


Перейти на страницу:

Похожие книги

Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука